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1 Introduction

1.1 The Dark Matter Problem

For over 50 years one of the outstanding problems in astrophysics has been
the dark matter problem (formerly known as the missing mass problem). It ap-
pears that most of the mass in the universe is in a form which is so far undetected
except through its gravitational influence. The first hint of this astonishing discov-
ery came in 1933, when Zwicky (1933) studied the dynamics of the Coma cluster
of galaxies and found that the apparently visible mass failed to provide the grav-
itational potential needed to explain the velocity dispersion of the galaxies in the
cluster by a large factor. This 'virial discrepancy’ has since been reduced but is
still significant (Kent and Gunn 1982). Meanwhile, similar discrepancies between
the visible (and inferred) mass and the dynamics have cropped up on every scale
from the solar neighbourhood to the Hubble flow (Faber and Gallagher 1979).

In retrospect the existence of dark matter should not be so surprising. All
the forms of matter astronomers are familiar with are luminous at least to some
extent, because it is by their light that astronomical objects are detected. It is
true that interstellar dust was first detected in absorption in the visible rather
than by its infrared emission, but by and large astronomers have studied luminous
matter simply because of the observational selection effect to end all such effects:
observability, at whatever flux level in whichever waveband. We now realize that
nature has no need to produce only luminous matter, and indeed there isno a
priori reason why there should not be as many different kinds of dark matter as
there are luminous matter. For this reason I do not feel that the ’Occam s razor’
argument in favour of trying to explain all dark matter problems by a single ‘dark
matter candidate’ holds much weight.

We can now identify 4 different dark matter problems: The local or ‘Oort

limit' matter; the dark matter in galactic halos; the dark matter on scales of
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clusters, which seems to make up one tenth of the closure density; and the aesthetic
dark matter, required to make the universe exactly flat, for which there is little
observational evidence as yet.

What observational evidence there is for dark matter is all of the samé basic
form. In principle dark matter (mass-energy not emitting electromagnetic radia-
tion) might interact with the universe in a number of ways that we might detect,
for instance by the emission of neutrinos, or it may be completely inert. All matter
must, however, be detectable by its gravitation. Gravitation causes test particles
to fall towards matter of mass M which is a distance R away at a speed V which

depends on the initial conditions but in general is of an order given by
M =V3R/G (1.1.1)

. where G is the Newtonian gravitational constant. The equation is exact for a test
particle in circular orbit around a central Newtonian mass, but all other methods
of measuring mass basically boil down to (1.1.1) with appropriate generalizations
of V and R. For a cluster of stars or galaxies the individual gravitating objects are
also the test particles, and the virial theorem is used with the adoption of appro-
priately weighted mean cluster radius and velocity dispersion (Heisler, Tremaine
and Baheall 1985). For the disk of a galaxy the mass interior to radius R may be
measured by the velocity of gas orbiting at that radius; the gas atoms are treated
as test particles. If the potential is not spherical, the formula is only true exactly
in the large R limit, and the exact formula for a finite disk has been derived by
Lynden-Bell and Pineault (1978).

The evidence for the local dark matter problem comes from estimates of the
acceleration of stars in the direction perpendicular to the galactic disk. This is
referred to as ‘Oort’s limit’ on the loca] dark matter, after the paper (Oort 1960) in
which he claimed evidence of a large mass density by analysing the ‘K’ (vertical

force) law for a sample of stars. The ‘K ¢’ formalism gives an estimator of R in
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(L.1.1) as

R=—-———=-—(nV? (1.1.2)

where V in this case is the vertical velocity dispersion and n is the number density
of the stellar population being used as a mass tracer. Early attempts to measure
the galaxy’s local gravitational field in this way ran into many problems, and
if some of the data were interpreted by simple models a negative mass density
could be derived for part of the disk! (See Radford’s (1976) discussion of his
analysis of Upgren’s data using Oort’s method, and alternative methods which
give a physically reasonable answer. ) However when care is taken to select
uniform samples of test stars, and to treat the stellar hydrodynamics in a self-
consistent manner, it appears that the measured value of the local mass density
(Bahcall 1984) is twice that estimated from adding up the locally observed stars
and gas. The mass density is about 0.1Mgpc~3. For some time it was thought
that very faint main sequence stars might make up the difference, but the work of
Reid and Gilmore (1982,1984) constraining the low mass end of the main sequence
excludes this possibility (but see Hawkins (1986)). It remains possible that there is
a further peak in the stellar initial mass function at low initial masses, but despite
the discovery of the brown dwarf candidate VB8B (McCarthy et al 1985) searches
for such ‘Brown dwarfs’ have yielded little evidence for such objects (Probst 1983,
Tyson et al 1985, Gilmore and Hewett 1983). Hegyi and Olive (1983) show that
low mass stars cannot make up the local dark matter if their IMF is a simple
power law extending up to normal masses. Hegyi (1981) and Boughn, Saulson
and Seldner (1981) set limits on the number of low mass stars in the halo of
NGC 4565 by photometric observations in the near infrared. Low mass stars
and ‘Jupiters’ cannot be excluded if their initial mass function is independent of
the IMF of luminous stars. In some galaxies dark matter may be produced by
formation of low mass stars in cooling flows (Fabian, Arnaud and Thomas 1985).

Larson (1985) proposes a bimodal star formation model in which there would be
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an extra peak in the IMF above 1 Mgat early times, leading to the production of

burnt-out white dwarfs which could explain the local dark matter.

The best evidence for dark matter on galactic scales comes mainly from mea-
surements of the neutral hydrogen rotation curves of spiral galaxies (Freeman
1970, Bosma 1978, Rubin et al 1980, Burstein et al 1982). The rotation velocity of
the gas in spirals appears to remain constant out to radii well beyond the optical
extent of the galaxy, whereas, if the mass traced the light, the velocity should drop
off slowly with radius. Recently attempts have been made to analyse the rotation
curves to determine the distribution of matter in the disk, bulge, and dark halo
components of the galaxy (Carnigan and Freeman 1985). The results indicate that
most such galaxies do indeed have dark halos, although their importance relative
to the luminous component may vary considerably. Thése decompositions give
some freedom to vary the relative importance of disk and dark halo to explain a
given curve but many galaxies require at least some halo component. Polar ring
galaxies (Katz and Richstone 1984, Sparke 1985) allow the potential to be probed

well out of the plane and show that the potential is more spherical than flat.

Clearly this dark matter is distributed in a different manner from the lumi-
nous stellar populations; its origin is @herefore presumably different from that of
these populations. The evidence for a dark halo of our own galaxy is weaker and
rests largely on the velocities of distant globular clusters (Hartwick and Sargent
1978, Frenk and White 1982) and dwarf galaxy satellites; the observational un-
certainties are sometimes quite large (Lynden-Bell ¢t al. 1983) although they are
being reduced by ongoing projects (Peterson 1985, McDowell and Godwin 1986).
Similarly, the evidence for dark matter in elliptical and dwarf galaxies is still ten-
tative (Lin and Faber 1983), but growing. Aéronson and Olszewski (1985) report
new measurements of Draco and Ursa Minor, indicating that dark matter does
exist in these dwarf galaxies, which provides a severe constraint on some dark

mattevr models.




The original dark matter problem, that of clusters of galaxies, remains beset
with uncertainties. Problems of the definition of cluster membership and uncer-
tainty as to whether the clusters have reached virial equilibrium or still show the
effects of earlier substructure in their dynamics mean that estimates of cluster
gravitational masses are often controversial (Valtonen et al 1985). Re-estimates
of the masses of individual galaxies and the discovery in some clusters of large
amounts of hot X-ray-emitting gas have reduced the discrepancies, but in many
cases they remain substantia] (Rood 1981, Kent and Gunn 1982.) The discovery of
the X-ray gas allows an improved probe of the potential (Fabricant and Gorenstein
1983). Cooling flows onto central cluster galaxies indicate that dark matter may
still be being formed in these objects as mass drops out of the flow and remains
invisible. Low mass stars might explain this form of dark matter (Fabian et al
1982).

In recent years estimates of the mass density of the universe on very large
scales, in terms of the density parameter (the ratio of the density of the universe
to the critical density for recollapse), have been made by analysing redshift surveys
to detect deviations from the uniform Hubble flow, both by studying infall toward
Virgo within the local supercluster, and Hubble flow deviations on larger scales.
Most of these analyses give )y = 0.1 — 0.3 (Peebles 1984). The only evidence
for larger values of 1y come from analysis of IRAS galaxy distributions (Yahil,

Walker and Rowan-Robinson 1985) which now give an estimate of 2 = 1.0.

Another candidate for the dark matter clustered on scales larger than galaxies
is hot X-ray emitting gas, which could in principle be responsible for the X-ray
background. Guilbert and Fabian (1985) show that such a fit requires Qy,, > 0.2.

/The most popular candidates for the dark matter on scales larger than galaxy
haloes are various varieties of non-baryonic particle, particularly weakly interact-
ing massive particles. None of the currently proposed candidates has yet been

shown to exist even in a laboratory context, much less in the cosmological con-
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text. Much of their appeal comes from their ability to provide the aesthetic dark
matter, for which baryonic matter seems ruled out by the constraints on light
element nucleosynthesis in the Big Bang. To put these constraints in context I
now summarize the contribution to the cosmological density parameter inferred
for each of the dark matter problems. The visible material and the local dark
matter each contribute 2=0.01. The halo dark matter has Q = 0.1, and most
estimates of the matter in clusters range from 0 = 0.1 to 0.3. The closure density
is 1 = 1. The hot big bang nucleosynthesis calculations (Yang et al 1084) suggest
that the contribution from baryons to the mean mass density of the universe is
1y = 0.12h;7, where hs; is the Hubble parameter in units of 50 km /s/Mpc. If we
believe ks is unity, then we must associate the mass in halos and possibly clusters
with dark baryons. In this case there may not be any nonbaryonic matter, except
if the universe does have = 1, when such particles must be involved. If hso = 2,
however, then only the local dark matter is baryonic, and the matter in halos
and on larger scales must be nonbaryonic if the nucleosynthesis limits apply (Rees

(1984) discusses some ways to avoid the nucleosynthesis limits).

The inflationary cosmological scenario (Guth 1981, Linde 1982) which has
motivated much recent work on the very early universe predicts that Q, = 1 to
a high degree of accuracy. This has reinforced the view long held by many cos-
mologists on more metaphysical grounds that this is the natural value for 0y to
have. Recent theoretical work in particle physics (grand unification, supergrav-
ity) has also predicted the existence of many new elementary particles. If any of
these are found to exist, they will contribute to the energy density of the universe.
Among the cand'idates that have been discussed are massive neutrinos, photinos,
axions, higgsinos, gravitinos, etc. Fortunately, considering the rapidity with which
new candidates are suggested, Bond and Szalay (1983) pointed out that the rel-
evant property of any of these candidates is the epoch at which they become

non-relativistic, which determines the mass scale which collapses first. Particles
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are divided into ‘hot’ and ‘cold’ according to whether their temperature is high
enough to smear out small scale fluctuations in the early universe or not. For fast,
‘hot’ particles such as massive neutrinos, the effective free streaming mass is large
and clusters can form easily, but fhe neutrinos cannot cool enough to settle in

- the halos of individual galaxies. For ‘cold’ particles smaller fluctuations form first
(Davis et al 1985).

Limits can be set on particles which decay into photons (Silk and Stebbins
1983, Bond,Carr, and Hogan (1986), Steckel 1986) by comparing the expected
flux of redshifted photons with observed background light limits in the same way
as I do for pregalactic starlight in Chapters 3 and 5 of this thesis; however, I do
not consider these decaying-particle ‘light limits on dark matter’, as I restrict my
investigation to astrophysical (as opposed to particle-physics) candidates for the
dark matter.

The simplest remaining candidate for the local or halo dark matter is the
remnants of previously luminous staré. However, if the stars were of ordinary mass,
they would have produced too high a metallicity in the succeding generations of
stars to be consistent with the known chemical history of the galaxy if current
models of stellar and galactic evolution are correct. Stars of sufficiently high mass
might leave most of their nucleosynthesis products in their remnants and thus
escape the nucleosynthetic constraint. Such stars could also explain the missing
mass discrepancy on all scales except where they would be inconsistent with the
Big Bang limit on baryon density. The remnants of these stars would be massive
black holes.




1.2 The Population III Hypothesls

The galaxy contains two main populations of stars - the modern Population
I, with a metallicity (metal fraction by mass) of 10~2, of which our Sun is an ex-
ample, and Population II, an older generation of stars with metallicity a hundred
times lower, forming the bulge and halo of our galaxy. In fact there is a contin-
uum of ages from the youngest extreme Population I stars to the oldest and most
metal-poor Population II stars, but no star is known with a metallicity less than
about Z = 10~ (Bond 1981). If the standard hot big bang model of the universe
is correct, the first stars to form would have had no CNO metals at all, so there
must have been precursors to the Population II stars. This hypothetical first gen-
eration of stars has been given the name Population III . There have been many
theoretical studies which have investigated star formation in a metal-free environ-
ment; the main feature is that the collapsing cloud cannot cool as efficiently, due
to the absence of metal line cooling. The main cooling effect is that of molecular
hydrogen. It has been pointed out (Tohline 1980, Silk 1983) that the low cooling
and the possible absence of substructure in the Population I clouds will make it
easier for stars of high mass to form. If the Population III initial mass function
were biased to higher than normal masses, then the zero-metal stars could have
been very numerous in the past despite their complete absence today, since they
would by now all have completed their evolution. The formation of stars at high
redshift is likely if the spectrum of the density fluctuations in the early universe
that gave rise to galaxies continued to smaller scales. Bound regions of a few
million solar masses would then form naturally (Peebles 1974, Fall 1979). Carr
and Rees (1984a) discuss why the first pregalactic objects might have masses in
the range 10% — 106 M.

In order to explain the early nucleosynthetic history of the galaxy, Schwarzchild
and Spitzer (1953) suggested that the earliest stars were more massive than typical

stars at the present time. Schmidt (1963) developed this idea in a detailed model
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for the galactic star formation history. Truran and Cameron (1971) suggested that
these Population ITI stars could also provide the dark matter. This requires large
numbers of very massive stars which just provide dark remnants in addition to

the massive stars which provide the initial enrichment.

Pregalactic stars have also been invoked to produce the microwave back-
ground (Layzer and Hively 1972, Rees 1978) or to produce distortions in it (Puget
and Heyvaerts 1980, Rowan-Robinson, Negroponte, and Silk 1979, Negroponte,
Rowan-Robinson and Silk 1981), or explain the dark haloes of galaxies (White
and Rees 1978). Galaxy formation triggered by Population III stars has been dis-
cussed by Ostriker and Cowie (1981), Ikeuchi (1981), and Carr and Rees (1984a).

The properties of an early generation of metal-free very massive stars have
been studied by Ezer and Cameron (1971), Ober, El Eid and Fricke (1982), and
Bond, Arnett and Carr (1984, hereafter BAC). I will use the BAC models of
Population Il VMO (Very Massive Object) structure as the starting point of
my calculations, and expand upon the studies of the consequences of Population
III stars in the universe in Carr, Bond and Arnett (1984,CBA). The background
radiation from pregalactic and protogalactic stars has previously been considered
by Peebles and Partridge (1967), Thorstensen and Partridge (1975), Eichler and
Solinger (1976), Hartquist and Cameron (1977) and CBA.

The fate of a massive star depends on both its composition and its angular
momentum. A non-rotating metal-free star will collapse if its oxygen core is more
massive than 100Mg(BAC) but suffiecient rotation can stabilize it against col-
lapse, resulting in explosions for stars as massive as 10* Mg (Glatzel et al 1986).
Non-rotating supermassive stars with mass of order 10% Mg collapse if they have
Population III metallicities, but Population II stars of the same mass explode
(Fuller et al 1986).

Population III massive stars solve the orginal problem for which they were

created, producing an initial galactic nucleosynthetic enrichment, so well as to be
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positively embarrassing. Tarbet and Rowan-Robinson (1982) study the constraints
on production of heavy elements by Population III stars assuming a power-law
initial mass function. Carr and Glatzel (1985) show that 0, < 10~ for exploding
VMOs from the constraint that the minimum Population I abundance is Z=10"3,
Collapsing VMOs will return some of their mass to Space via mass loss prior to
collapse. If the mass loss rate is low, slower than the rate at which the outer layers
of the star are enriched, then the stars will produce far too much helium to be
consistent with both the present abundance and the hot big bang nucleosythesis
calculations. This problem can be turned to advantage, as it turns out that in the
context of a cold (low entropy per baryon) universe (Carr 1977) the Population III
stars can produce all the helium (Talbot and Arnett 1971, Bond et al 1983) and
the appropriate amounts of light elements (Ramadurai and Rees, 1985). In this
model the radiation produced by the stars would be the microwave background
itself and so the limits presented in Chapter 5 of this thesis would not apply,

although the limits on nearby remnants (Chapter 7) would.
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1.8 Black Holes In Astrophysics

The Newtonian black hole was first discussed by Michell (1784) and Laplace
(1795, 1799). The general theory of relativity (Einstein 1916) also predicts the ex-
istence of black holes; a non-rotating black hole is one of the simplest solutions to
Einstein’s equations, the geometry due to a point mass at the origin in a spherically
Symmetric empty spacetime (Schwarzchild 1916). More realistic rotating solutions
were found by Kerr (1963). However the idea that such objects might actually oc-
cur in nature wag initially met with fierce resistance. When Chandrasekhar (1931)
discovered the maximum stable mass for a star supported by electron degeneracy
pressure against its own weight, the possibility of catastrophic stellar collapse had
to be addressed seriously (Oppenheimer and Suyder, 1939). But it was not until
the reawakeﬁing of interest in GR in the 1960’s that the black hole was studied in
the astrophysical context (Wheeler 1968).

How might black holes arise in nature? The most obvious way is through the
collapse of a massive star. Most massive stars are believed to leave neutron star
remnants after losing much of their mass in a supernova explosion. If the mass left
in the collapsing core is too large, however, neutron degeneracy pressure will not
be sufficient to halt the collapse and the core will continue collapsing until after
it is within its event horizon - a black hole will have formed, While it is true that
the heaviest stars lose large amounts of their mass during their evolution, it seems
unlikely that all stars will lose enough mass to avoid leaving a remnant massjve
enough to become a black hole. It was thought that the minimum initial mass
above which all stars would leave black hole remnants might be as low as 10 solar
masses, but many recent authors suggest that a much higher mass is likely (see
chapter 8). While such black holes will exist, the rarity of such massive starsg today
means that they will be very rare unless the star formation initial mass function

was very different in the past.

In 1970 the American X-ray astronomy satellite Uhuru was launched and
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made the first extended studies of celestial X-ray sources. This mission revealed
the existence of energetic sources of radiation variable on short timescales, leading
to the realization that many of the X-ray sources were compact objects. Most are
now believed to be neutron stars, but some are candidate black holes. The first
and most famous black hole candidate was Cygnus X-1, a strong X-ray source
orbiting the star HDE 228668. Other black hole candidates are Cir X-1 (Toor
1977) and LMC X-3 (Forman et al 1976).

More massive black holes may arise more easily, if enough mass can be col-
lected together in a small space. This would be possible either through the coales-
cence of smaller objects, for instance by the dynamical evolution of massive star
clusters, or simply by primordial collapse; ‘protostars’ of mass above 108 Mg will
collapse directly to a black hole via the GR stellar instability without ever igniting
their central fuel (Fowler 1966).

The standard model of active galactic nuclei claims that such massive (108 to
10° Mg) black holes are indeed present in the nuclei of galaxies. The ‘evidence’
that the central engines of AGN are massive black holes is basically indirect. There
seems to be no plausible way of generating such large luminosities - both radiative
and kinetic (as in the bulk relativisitic flows in at least some radio sources) -
apart from the use of a very deep gravitational potential well. All the plausible
non-black-hole models of this type seem liable. to evolve rapidly into black holes
anyway. (Rees 1985)

It is even possible that there might be entire ‘black galaxies’ which would form
primordially given appropriate initial fluctuations. This idea has recently gained
some support from the observation (Turner 1985) that many gravitationally lensed
galaxies seem to have no visible lens associated with them. If the missing lenses
are indeed ‘big black lumps’ this could have important implications for the dark

matter on the largest scales.
At the other end of the mass range, primordial black holes of very low mass
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(Hawking 1971) might have been produced at very early stages in the expansion
of the universe, when the horizon mass scale was comparable to their mass. The
best limits on such objects come from the non-observation of gamma radiation
that would be produced when such holes evaporated by the Hawking process
(Carr 1978). This limit only constrains holes of mass below 10'7g. Since any
baryons going into these primordial holes would have been lost to the Universe
prior to nucleosynthesis, the usual constraints on baryonic matter do not apply in

this case. I will not consider primordial holes in this thesis.
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1.4 Light Limits on Stars and Black Holes

In Chapter 2 I will describe the models I will use for Population III VMOs,
and discuss the likely spectrum from these objects. I will also extend the work
of CBA by discussing the effect of the VMOs on their environment, and calculate

the emergent spectrum in the case of an optically thick nebula surrounding the
VMO.

Chapter 3 discusses the evolution of the background light produced by pre-
galactic or protogalactic sources like the Population III stars. Extragalactic back-
ground radiation may be our only way of inferring the conditions in the pregalactic
‘dark ages’ of the universe between the last scattering of the microwave background
and the recent era which we can observe directly. Any astrophysical processes
occurring at high redshift are likely to have been accompanied by some energy
release, so research into the extragalactic background holds out great promise of
containing clues to the origin of the structure we observe in the universe today.
Section 3.1 reviews the theory of the evolution of radiation in the expanding uni-
verse and casts it in a form appropriate for the Population Il context. Section
3.2 discusses analytically the effects of the radiation on the thermal history of the
intergalactic medium, and the absorbing effects of the intergalactic medium on the
background. I also discuss the likely contribution to the dust opacity from galaxies
along the line of sight. In 3.3, I describe a numerical code I have developed to
model the evolution of the background spectrum under a variety of assumptions
and to compare the predicted spectrum with observational limits. In 3.4, I present

the results of running this code for a representative variety of models.

Chapter 4 illustrates the problem by considering the interpretation of one
particular possible background radiation. Although the near-infrared background
discussed in this chapter has not been confirmed, it demonstrates how.one could
interpret such a background if confirmed, or how one might interpret a far-IR

background in one should be discovered. The conclusions of this study were that
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to explain the postulated near-IR background as redshifted starlight one would

have to invoke a closure density of stars at a moderate redshift.

Chapter 5 discusses the current status of observational constraints on the
extragalactic background light, and confronts the predicted models of Chapter 3
with these observations. I hence derive constraints on the dark matter presented as
a series of curves of allowed density parameter in VMOs as a function of redshift.
I deduce that current limits exclude the Population III hypothesis unless either
there is a dense dusty intergalactic medium, or the stars formed at high redshifts
(more than 40). In section 5.3 I briefly discuss limits on radiation generated by

the accreting black hole remnants of the Population III stars.

In Chapter 6, I repeat the calculations of Chapters 3 and 5 for stars with
conventional mass and spectra with temperatures appropriate to Population II

stars. This extends the results of Thorstensen and Partridge (1975).

Chapter 5 discussed limits on background light from the stellar precursors
of black holes; in Chapter 7 I study the limits on the non-observation of discrete
black hole sources. If black holes solve any of the the dark matter problems, they
should be present within a few hundred parsecs (depending somewhat on their
mass), and will be faint sources of optical and infrared radiation as ‘they accrete
from interstellar clouds. In section 7.1, I review the expected frequency of local
black holes, and, in 7.2, I summarize a model for the local interstellar medium.
Section 7.3 discusses black hole accretion from the interstellar medium. Section
7.4 discusses the spectrum generated by accreting black holes with thin disks and
holes accreting spherically and radiating by the mechanisms described by Ipser
and Price (1982). In 7.5, I calculate the corresponding predicted brightness of
the nearest black holes, for the cases when they make up the halo dark matter
and the disk dark matter. I deduce the maximum mass such holes could have
without contravening observations. The halo dark matter holes must have mass

less than 100 Mg, , while the disk dark matter holes must have mass less than 10
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Mg . These constraints unfortunately cannot be regarded as conclusive since they
depend on the uncertain details of the accretion spectrum.

In section 7.6 I use the accretion models discussed in Chapter 7 to investi-
gate the likely brightness of the nearest black holes which are ‘certain’ to exist -
the remnants of ordinary massive Population I stars. The limit thus set on the -
minimum initial stellar mass for black hole formation is rather low and somewhat
uncertain, but it may be possible to improve this limit in the future.

Chapter 8 summarizes the conclusions of the thesis and discusses how future

observational and theoretical work could improve the results discussed here.
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1.6 Cosmological Assumptions

I will assume that spacetime is described by the standard matter-dominated
Friedmann-Robertson-Walker model with zero cosmological constant, which can
be parameterized by the Hubble constant Hy and the density parameter Q. 1
will set Ho = 50hso km/s/Mpc. Q) is equal to the mass(-energy) density of the

universe divided by the critical density
pc = 4.7Tx 107?"h? kg m—3 1.5.1

When, as in chapter 3, I make analytical estimates of timescales in the expanding

universe I adopt an approximate time-redshift relationship
2 10-% —3/2

which is valid for 1 + 2 2> 2%, and exact for Q2 =1. In numerical calculations I
consider the two extreme cases Qo =0.1, as implied by some actual measurements,
and 1y =1, which has theoretical appeal, especially in inflationary scenarios.

I assume that the universe contains the presently visible galaxies with density
{Ygq; in units of the critical density, gas with comoving density 0,(t), Population
IIT stars with comoving density ,(t), and a possible further non-baryonic dark
matter component {0,;, which can make up {lp =1 in cases where 2, < 0.1 to
conform to the nucleosynthesis limits. There is no compelling reason to suppose
that the dark matter on the largest scales is the same as that making up galaxy
haloes; As pointed out in section 1.1, while Occam’s razor suggests we should
avoid multiplying our hypotheses, there may in principle be as many forms of dark
matter as of luminous matter, and more than one form may provide a significant
contribution to 2y (Carr 1985). In this thesis I attempt to constrain only the
contribution from stellar remnants, without specifying whether or not there is
additional non-baryonic dark matter making up the principal contribution to the

mass density.
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2. Population III Very Massive Objects and Thelr Environment
2.1 Models of Population III VMOs

Bond, Arnett and Carr (1984, BAC) study the structure and evolution of Very
Masgsive Objects, which they define as stars which g0 unstable to the creation of
electron-positron pairs during oxygen core burning. Here I review their results

and calculate a set of models to illustrate the properties of the VMOs.

The VMO mass range covers stars between 100 and 105 My . It was originally
thought that stars of such high mass would be unstable to disruptive oscillations
powered by thermonuclear burning, but nonlinear calculations show that these
oscillations are of finite amplitude and should not disrupt the star. There js
no question, however, that the rate of mass loss from the outer layers of the
atmosphere would be very large; it is not known how to estimate how large,
although crude extrapolations from the MO (Massive Object, or 10-100 My, stars)
range, where observational data exists, indicate that it will crucially affect the
evolution of the star. If the mass loss is severe enough to reduce the total mass of
a star of arbitrarily large initial mass to masses less than 100 Mg on a timescale
shorter than its evolutionary timescale, then VMOs cannot exist. I will assume

that there is an initial mass range for which the mass at the end of the main

sequence lifetime is still well within the VMO range. Since the material lost prior

to this stage is returned unprocessed to space, I will use M as the main sequence

rather than the intial mass M; of the objects I discuss in connection with the dark

matter problems. If M; » M this means that many stellar generations will be .

required to put most of the universe’s mass into remnants.
q p

Elementary stellar structure theory suggests that VMOs will have electron
Scattering as the main source of atmospheric opacity, and radiation pressure will
dominate gas pressure. This means that the luminosity will be roughly equal to

the Eddington luminosity at which gravity just balances radiation pressure (so
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that the star remains bound),
Ly = 4rGMmyc/or, (2.1.1)

which in turn implies that the lifetime bng ~ ch"’/L is independent of mass and
depends only on the efficiency ¢ with which the rest mass of the star is converted
into radiant energy. This efficiency depends on the initial composition and the
fraction of hydrogen burnt.

As pointed out by BAC, since the specific entropy of the star is roughly con-
stant, the Eddington standard n=3 polytrope model is a good first approximation
to the structure giving analytic expressions for the luminosity and radius. Their
more accurate approximation is a 'point source model’ in which an extended at-
mosphere is matched on to an n=3 polytrope exterior. This gives rise to correction
factors to the polytropic formulae which are expressed as functions of the entropy
parameter o = 8,/4Yy of the central polytrope, where 8 is the photon entropy
and Yr is the number of particles per baryon. Yr is related to the hydrogen
abundance Y, by Y7 = (3 - 5Y;) /4.

I now summarize the BAC equations giving the relevant stellar parameters.

o is given implicitly in terms of the mass by
M (o) = Far(0)1.18* (1 + 01 )32 (2.1.2)

where Fjs is the polytropic mass correctioil factor. An approximate solution of
this equation is
o(M) =0.24Y;1MYV2 _ o 61 (2.1.3)

but I have used the exact analytic form of F, given in BAC Appendix C. The

luminosity is given by
L/Lgqq =Fr(o)(1+071)2 (2.1.4)
and the main sequence time by |
tms = 1.7 x10°(1+ 0~ 1) F7 1Y, (1 + Yo/2)(1 - 5.6¥3 /M)yr (2.1.5)
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The radius of the star is
r+ = Fp(M)30.4Yro'/? |T; (o) Ry (2.1.6)

which depends on the central temperature T (in keV). An accurate approximation
to this is .
To(o) = 11.3(o%/1 + 0)*%87(Z/10-9)~0-079y oy (2.1.7)

From these fundamental Parameters we derive three more useful quantities.

We define the stellar ‘effective temperature’ T by the relation
L =4xrlopT} (2.1.8)
where o is Stefan’s radiation constant. The surface gravity is given by
g9=GM|/r? (2.1.9)

and the efficiency of the star is defined as the fraction of its mass M turned into
radiant energy,
€= Ltp,/[Mc? (2.1.10)

This last parameter is independent of the uncertain quantity ¥y which appears in
both the luminosity and the lifetime.

Table 2.1 gives the solution of these equations for a variety of parameter
choices. As our reference configuration we take a VMO model with parameters
chosen in the limit of large mass, and with an initial CNO element abundance
of Z = 10~°. This abundance corresponds to that generated by the stars them-
selves on their approach to the main sequence (Bond, Arnett and Carr 1984).
We then parameterize other stellar models in terms of this model and mass (and

composition) dependent correction factors denoted by f(M), as follows:
L=/fL(M)Lgss = 1.4 x 0¥, (M)M; W (2.1.11)
re = 6.2/p(M)M! R,
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Te = 10°fr (M)K
tme = 1.75 f,(M)Myr
€ = 0.0041f,

9=15x10%f, mg~?

where My = M /IOZM@ These factors are not independent and are related by

JrL = fe/ft (2.1.12)
fe=fdphi
fo = sz

they have surface gravities given by log(g/1 cm s7?) = 5.2. We shall adopt these
parameters to choose an appropriate mode] atmosphere spectrum. I choose to
adopt f., f;, and Sfr as the basic parameters to describe the stellar properties,
rather than mass, radius and luminosity. This choice is motivated by the fact that
the intensity of the background depends‘basically on e.

Previous authors have considered modelling the stellar spectrum as a pure
blackbody; in fact the electron-scattering dominated atmosphere will mean that
the atmosphere is more transparent at higher frequencies, because of the fre-
quency dependence of the free-free opacity. The higher the frequency, the lower

the optical depth, so escaping photons come from deeper in the star where the

diluted relative to a blackbody at the hotter temperature of the deeper material.

At low frequencies, the opacity is absorption dominated and the emergent flux is
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blackbody at a frequency dependent temperature which decreases with decreas-
ing frequency. This results in a harder ‘modified black body’ spectrum; accurate
model atmosphere calculations have not been done for such stars with log g =5,
but a pure hydrogen model atmosphere for a star of somewhat higher surface grav-
ity (log g = 6) has been calculated, (Wesemael ef al, 1980) which I shall refer to as
the H model. In Fig. 2.11 plot appropriate blackbody, modified blackbody, and H
model atmosphere spectra for comparison. The 'modified blackbody’ model used
to fit the model atmosphere is a simple homogeneous slab model (Felten and Rees
1972, Shapiro and Teukolsky 1983) with a density of 10'5cm—3 and temperature
2.6x10°K, which reproduces the correct total flux. It is intended simply as a crude
indication that the origin of the harder spectrum of the H model atmosphere arises
from the fact that electron scattering rather than free-free absorption begins to
dominate the opacity at high frequencies. The Lyman limit is in the frequency
regime where the absorption is greater than scattering, and the opacity increase
due to photoionization means that the flux is smaller on the high frequency side of
the Lyman jump. This model atmosphere should be a better representation than
the blackbody for our stars; if the stars actually have a normal helium abundance,
the spectrum will have a large jump at the helium edge and will contain little flux

beyond this point.

Husfeld et al. (1983) calculate low gravity non-LTE hydrogen-helium atmo-
spheres with helium abundance by number Yy, = 0.1 and show that the details of
the spectrum close to the helium ionization edge are strongly gravity dependent.
Fortunately our models have almost constant surface gravity; they lie in the region
of the ( log g, T, 77 ) plane where Husfeld ef af. predict that the helium edge is
in emission. In the layers of the stellar atmosphere in which this part of the spec-
trum is formed, there is less singly ionized helium than one would expect if the
gas there were in LTE. This is becaﬁse the Het is being photoionized to He++ by

radiation from deeper in the star. Thus the He* continuum is more transparent
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and so in turn the continuum radiation that escapes from the star comes from
deeper, hotter layers than an LTE calculation would suggest. We adopt one of

the Husfeld et al. models (log g=5.0, T-eff = 10°K) and will refer to it as the He

I parameterize the number of ionizing photons in the spectrum by
N =26x10%f, fLMys—1, (2.1.13)

This definition gives fy =1 for the blackbody, fx = 0.73 for the H model stellar
atmosphere, and fy = 0.83 for the He model.
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Table 2.1 VMO properties

M Lg, t R Te log(q)
(Mp) Myr)  (RY) (k) (g in cm/s")
) — 2 g K (g

g 100 | 0.32 4.6 4.3 92000 5.17  0.0034

} 200 | 0.44 3.7 6.2 99000 5.15  (0.0038

* 300 | 0.51 3.2 7.8 102000 5.13  0.0039
400 | 0.57 3.0 9.1 103000 5.12  0.0040
500 | 0.62 2.8 10.3 105000 5.11  0.0040
102 | 0.79 2.2 15.6 107000 5.05  0.0041
10% | 0.93 1.9 51.1 110000 5.02 0.0041

| 105 | 0.98 1.8 146.0 117000 5.11  0.0041

l Table 2.2 VMO propeties: the 'f! parameters

|

|

; M, f, fie Fa i f3 f.

f 1 0.32 2.6 1.00 0.92 1.00 0.83

f 2 0.44 2.1 .02 0.99 0.9 0.93

| 3 0.51 1.8 1.06  1.02 0.92 0.95

| 4 0.57 1.7 1.0  1.03 0.92 0.98

, 5 0.62 1.6 1.06 1.05 0.89 0.98

J 10 0.79 1.2 1.14 1.07  0.77 1.00

| 100 | 0.93 1.1 117 1,10 . 0.73  1.00
1000 | 0.98 1.0 1.06 1.17 0.89 1.00
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2.2 Ionization of HII regions by YMOs

Whether the Population III stars are pregalactic or form within protogalax-
ies, it is likely that there would be a substantial amount of gas in their vicinity.
Ordinary massive stars form in dense gaseous environments, which absorb their
extreme ultraviolet radiation in a region of ionized hydrogen (HII region) around
the stars. The enormous amounts of ionizing radiation emitted by VMOs may be
sufficient to ionize not just the surrounding gas but the entire rest of the universe
(if a sustantial fraction of the mass of the universe is in VMOs) and so affect the
universe’s thermal history. In fact Couchman (1985) and CBA have shown that
even for small abundances of VMOs the universe may be re-ionized. I now study
the possible environments of the VMOs to attempt to quantify the likely effects

of VMOs on the universe.

Consider a nebula of density profile n(r) surrounding the star, or a group of
the stars. Let the number of hydrogen atoms in the cloud per star be BYyM/[myg,
so as to make ratio of the mass in the clouds to the mass in the stars g where
the hydrogen abundance isYy.In2211 consider the cloud to be the star’s mass
loss atmosphere, and in 2.2.2 the cloud in question is a constant density nebula
around the stars. In each case B is used to denote the ratio of gas mass in the
relevant cloud to the mass in stars. Note that this fraction 8 may be large, but
if the sources make up the dark matter it will be less than 1 at a typical time in
the Population III era, unless the holes accrete most of their mass subsequently.
For a given volume of gas, we now determine the density that the nebula must
have in order to absorb all the incoming radiation. As a simple approximation,
we consider a one-zone model \yith a single temperature, and balance ionizations
caused by the star with those recombinations which do not involve the production
of ionizing photons. This is the ‘on-the-spot’ approximation in which ionizing
photons produced in the cooling of the gas are reabsorbed immediately. If aeys s

the effective recombination rate (i.e. excluding reionizing recombinations), then
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equating the rate of production of stellar ionizing photons to the effective number

of recombinations in the nebula gives

N = ;/ac_”nzdv (2.2.1)
We will temporarily ignore reionizations caused by free-free photons and n>2 re-
combination continuum photons. deff is then simply the recombination coefficient
to all levels excluding the ground state, agg = 3.7 X 10-20T5 %% m3~!, (Kaplan
and Pikel’ner 1970) which depends on the nebular temperature T = 105Ts K. The
intense stellar flux will maintain Ty close to 1 in spite of cooling due to hydrogen
and helium, in contrast to the normal metallicity case where line cooling by oxygen
and other metals would lower Ty to 0.1 or so. If the nebula is very thin, Compton
cooling by the microwave background photons may be an important effect, but
we shall see that the nébula must be very dense to affect the outgoing radiation.
Detailed calculations, discussed in the next section, show that inelastic collisions
reduce the temperature to Ts = 0.3.
In addition the gas may contain dust; in the true first generation of stars there
will of course be no dust, but in succeeding generations of stars there may be a

small abundance. If the dust mass fraction is x, the Lyman limit optical depth is
To = KoMHX / ndr (2:2.2)

where kg is the dust opacity at the Lyman limit, so kKomgX 18 the dust optical
depth per unit hydrogen column; a rough fit to the dust extinction in our own
galaxy is that the cross section of cosmic dust varies approximately linearly with
frequency from the IR to the far UV. Using this approximation we adopt a fit to the
data of Howarth (1983) with komaX = 9.7 x 10~25m? for the interstellar medium
in our own galaxy. It is believed that x ~ 0.01 in our galaxy, so if the Population
III era dust had the same properties, ko = 1.6 X 10*m?kg~" . This is the only

reasonable assumption we can make but of course the size and composition of

Population III grains might be quite different.
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2.92.1 The Mass Loss Atmosphere

Now consider the star’s mass loss atmosphere. I assume the nebula to contain
the total mass lost in the main sequence phase, which is a fraction 8 of the stellar
mass M. Hence the mass loss rate is M = BM [tms. Following Hoyle et al.(1973),
we consider an r-independent wind velocity v = 10%vs km/s giving a density profile

for the hydrogen number density of

drvmyrin = BYuM/[tn, (2.2.3)

where Yy is the hydrogen mass fraction. The ratio of ionizations to recombinations
in the gas is then
N

yr soM; 108 (8Yk) "2 v3(ro/rs) In fhidrr o (224)

where ng is the density at the inner edge ro of the l/r nebula and the stellar
radius is given by eq. (2.1.11)

Even if 8 is of order unity, as is likely for such radiation pressure dominated
stars, this means that the condition (2.2.1) cannot be easily satisfied and the
envelope will be highly jonized. The main source of opacity will then be dust.

The optical depth is just 7 = noKoMH XTo, or
r = 1.0 % 105M3 8Yu(rofre) 174 10 12 (2.2.5)

at the Lyman limit. Hence the stars can only be infrared objects if they have such
a mass-loss atmosphere with x3 greater than about 10~¢. The first generation
Population III stars will have smaller abundances than this if their nucleosynthesis
products are not well mixed into the atmosphere. If there is enough dust, the
spectrum will be redshifted to the present epoch without further modification
unless the intergalactic dust abundance is very high (see next section). For the
remainder of this section we assume that there is insufficient dust produced in the
star’s atmosphere to make it opaque, and consider the case where the star is an

ultraviolet source.
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2.2.2 The Local Nebula
We now consider a constant density region around the star (or a group of the

stars). The minimum density required to absorb all the ionizing radiation is from

(2.2.1)

. ng
n= (_‘—__ﬂYHaeﬁ‘M) (2.2.6)

=59 x 10107 (8Yy) I fe S m™d

This corresponds to a Stromgren radius of

1/3
Rs = 0.25M3T 03 (8Yg)*/® (I—I{-‘}-) pe (2.2.7)

This HII region will expand in order to achieve pressure balance with the sur-

rounding gas. The standard analysis (see Spitzer 1978 for details) gives
R/Rs = (1+t/t;)*" (2.2.8)
where

t, = 4Rs [T(2kT [m,)'/? (2.2.9)
= 3 x 108 ML T 08 (Y )?/* (I fel f) My

which is essentially the Stromgren sphere sound crossing time. The ratio of the

stellar lifetime to this timescale is
tme [ty = 5 X 102M; /3T 3(8YR) ™22 £11° 1/ 121° (2.2.10)

so the expansion will be unimportant only for large masses and cases where the
gas to star mass ratio is large. Eq. (2.2.8) remains valid until pressure equlibrium
has been attained, or until the star turns off. In the scenario we are considering

the stellar life is always less than the time to reach pressure equilibrium.
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For a pregalactic uniformly distributed Population III of 200 Mg stars with
roughly half the stars burning at the same time, so the gas mass can be comparable
to the star mass, we have # = 1 and Mg = 2, 80 tm, [ty = 240 (taking Ts = 0.3).
In this case we must therefore allow for the expansion; at the end of the stellar

life the radius of the ionized zone is
R = oMM (8Y )™ £8* (S fe) /¥ pe (2.2.11)
and the mass of gas in the zone has increased by a factor
SMIM = 200M; 2/ 107 (8Yu) ™7 £ (S )7, (2.2.12)

which for our example is equal to 100. Hence for the final ratio of gas mass to star

mass to be g', the initial density must be
n=14x 10080231248 Py B f P (g £)3® mS (2.2.13)

and final radius
R = 0.25 M 3T 03 (8'Yu ) pe (2.2.14)

For the parameters above, we have n = 1.2 X 10°cm~3 and R = 0.5pc, which
sems implausible as it is much higher than the densities encountered in regions
of ordinary massive star formation. We conclude that if the stars are uniformly
distributed pregalactic objects they will probably ionize the gas in their vicinity
without running out of UV photons. In other words, as discussed below, they will
jonize the universe (since the total mass of gas in the IGM will be less than the
mass in stars.)

At the other extreme we consider a protogalaxy of mass 101°Mg . If all the
mass eventually goes into VMOs, then the fraction in VMOs at any one time
must be greater than the ratio of the stellar lifetime to the Hubble time, or 10~*.
Consider the galaxy as a common HII region for a cluster of VMOs of total mass

108 M ; then the expansion is negligible and the density required to absorb the

31




UV is 1 em~3, which is typical for a galaxy. Hence in this scenario the galaxy can
just contain the UV radiation. One might worry that the ionization would prevent
further star formation but, even in this low density case, the recombination time
is short compared with a stellar generation, and will be even shorter in low density
regions. The other potential problem with extending the Population III era over
so many stellar. generations is that pollution by earlier generations will probably
establish Population II conditions before all the mass is processed into VMOs.

An intermediate scenario is one in which the Population III objects are star
clusters of total mass 108Mg , (whether this is made up of 100 10* M stars or
10* 100M stars is immaterial due to the slow variation of the ‘f parameters’).
There are many ways in which such objects might arise in the early universe (Carr
and Rees 1984a). To give a large gas mass we suppose that star formation is
sufficiently inefficient that only 1% of the mass is in stellar form at any time,
so § = 100 and M, = 100. 100 stellar generations corresponds to an expansion
time at z = 16h5_02 / 3, so there is enough time for all the cluster to go through
the Population III phase. Then the expansion of the HII region is marginally
important, and we find that n = 400 cm~3and R = 40 pc is required to contain
the ionizing flux. This seems a plausible Population III scenario, so I conclude
that the nebular-reprocessed spectrum is a viable possibility for the light from
Population ITI stars.

For dust absorption, ro = nkompygXr. Since we can find r in terms of n and 8

from 4znrd/3 = BM[mpg, 1o > 1 if
n>4x1048vg)" dx~IM; P md (2.2.15)

This is always less important than neutral hydrogen absorption providing that the
dust abundance is poorer than Population II.

In the cosmological context it is useful to express the above results in terms of
the corresponding cosmological density parameters and the overdensity compared

to the background gas density. In this way we determine whether the condition
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for ionization derived in eq (2.2.6) implies that the stars will ionize all the gas in
the universe, so that their jonizing ultraviolet flux is not all absorbed.

Assume that the mean number of stars per unit volume is n., and that each
is surrounded by a nebula of volume Vy and gas density ng . The stars may be
grouped in clusters of N, objects, in which case the total volume of the surrounding
nebula is taken to be N,Vn. Then the clumping factor of the nebulae §, defined

by the inverse of their volume filling factor in the universe, is given by

n;! nmy

b= gy /N, = BYuMn,

(2.2.16)

Let the cosmological density parameters for the stars and nebulae be (. and

Q, = A0 respectively. The corresponding coordinate number densities are

ne = Qupe(l + 2)* M (2.2.17a)
— 2.4 x 107°Q,h%, M m™S
ng = Ngpc(l+ 2)*Yub/mu (2.2.17b)

5o to avoid ionizing the universe we require, substituting (2.2.16) in (2.2.6),

F\( ma )} | g1y
" (:;:) 37554‘) _ 2.0x 10T f £ AT Y 07 hig 27 (22:18)
®

For the unclumped background gas, 4 is unity. If equation 2.2.18 is to be satisfied
in this case, we must choose not only large z but also large . Assuming that we
believe that the total density parameter is at most unity, this means that 1, must
be small. Even at z=100 the background gas will be ionized umnless Q4 is roughly
as small as 10~* or so. At lower redshifts it is even easier to ionize the gas. We -
are interested in the case in which 1, is the major baryonic contributor to (o, and
sof <1 We therefore conclude that a substantial amount of matter is required

in dense, clumped (& > 1) regions, or the Lyman continuum will not be absorbed
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(Carr,Bond and Arnett 1984). In section 5.3 I show that the remnants of the stars
will not accrete a significant amount of mass if the gas is unclumped.

Equation (2.2.18) may be satisfied for high redshift sources (z ~ 100) in the
case of parent gas clouds of 106 Mg collapsing shortly after recombination and
forming clusters of Population III objects at a later epoch. Such density perturba-
tions would collapse, turning round when their density relative to the background
gas is 5:5. The clouds collapse and virialize at some epoch 2z, increasing their
density relaitve to the background gas by a further factor of 30. Assume they
then form stars at a redshift 2, when the overdensity relative to the bakground
is § = 200(z1/22). This satisfies eq. (2.2.18) if z1 > 450 which is comfortably
after recombination in the standard model. Hence in this scenario the ionizing
radiation might be absorbed. I note that the implied gas density is quite large;
clumps of normal galactic densities would be msufﬁment to absorb the radiation
but the densities found in dense molecular cloud cores would be adequate. The
opacity from dust is similar to the hydrogen opacity if the gas-to-dust ratio is 1
per cent of galactic, corresponding to Population II metallicities.

The results of this section can be summarized by saying that very dense gas
is required to stop the VMOs ionizing the universe. In section 3.21 will show that
even if the universe i8 ionized initially, the radiation may be absorbed later. In
the next section I calculate the likely spectrum if the radiation is indeed absorbed

by hydrogen.
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2.8. Modelling the Stellar and Nebular Spectrum

The spectrum of a pure hydrogen nebula photoionized by a VMO will be
largely recombination continuum and Lyman line radiation. We take into account
free-bound and free-free processes, but we ignore collisional excitations and pho-
toionizations from excited states. We start by omitting collisional ionization and
excitation entirely, to get a first approximation to the problem, and then include
these processes. ‘

In the actual spectrum calculated we approximate the line spectrum by as-
suming that an electron recombining to an excited level falls one level at a time
to the ground state, producing La, Ha, Pa, etc., photons. This gives the correct
total energy and corresponds to the standard 'Case B’ approximation in which the
optical depth is large in the Lyman lines. We also assume that La line photons
will be scattered out of the high optical depth line core before they are degraded.

The electron temperature of the nebula is calculated by modifying the hydro-
gen nebula equation of Baker, Menzel and Aller (1938) to include the on-the-spot
approximation. Suppose that in a region of the pebula with emission measure
W = n?V the gas absorbs N stellar ionizing photons per unit time corresponding
to absorbed energy L per unit time. Then the total number of recombinations
must be equal to N plus the number of ionizing photons created in recombination
and free-free processes. Hence the effective recombination rate is equal to the
recombination coefficient for non-ionizing photons minus the production rate of
jonizing free-free photons. Similarly, L must be equal to the emitted luminosity
from non-ionizing recombination and free-free radiation. In fact, if we adopt as
temperature parameter Zo = R/kT, where R = La?me? and define a characteris-

tic recombination coefficient
A, = 647%(37) "3 a? (h/me)’c = 5.20 X 10~2%m3s™}, (2.3.1)

then
N|W =Aoz§f(zo) (2:3.2)
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LW =RAozf g(z0)

and

L/NR = g(z0)/f(z0) = e(z0) (2.3.3)

.where €(zo) is a completely determined function of temperature which is derived
below. Choosing to express all quantities in terms of Ao allows me to express
the standard equations for the radiative processes in a particularly simple form,
avoiding the usual proliferation of dimensional constants. Hence for a given value
of L/NR, since €(z;) is monotonic in the range of interest, the temperature of
the zone can be determined and the spectrum calculated. L and N are both
proportional to the neutral fraction, so this unknown factor cancels out and the
jonization does not need to be known before the temperature. It turns out that
a simple one-zone model reproduces the spectrum and the value of W required
to absorb all the ionizing radiation to good accuracy when compared with more
detailed zoned ionization models run with a variety of parameters. The derived
electron temperature is close to that of the input stellar spectrum.

I now derive the function €(z,). Introducing z = hv/kT = hvzo[R as a

dimensionless frequency variable, the recombination coefficient to level n is

ornz = i (BED) s

for z > zo/ n2. Hence the total recombination coefficient to levels n=2 and above,
excluding recombinations which produce ionizing photons (so the frequency inte-

gral is cut off at z = zo) is

(o o]

1
anon-ionizing(%) = Aozgn 2 ,—ﬁczo/n’(El(-"’O/"a) — E1(0)) (2.3.5)

n=2

where E, is the first exponential integral, E;(y) = fy°° e~V [ydy. The energy emit-

ted for each of these recombinations consists of a continuum photon of energy
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zR[z, and line photons of total energy R(1 — 1/n?)/zo, the energy level differ-

ence between level n and the ground state. The frequency-integrated emission

coefficient is therefore

)
; Z 1y gl
Jeont = RAoiﬂ(a)/2 ;‘—3‘10 1(1 —€ 20(2 1/"'2)) (236)

n=2

for the recombination continuum, and

o o]
: 1 1
fine = RAol? 22 (1= )6/ Bala/ ) (2.)
n=2

for the lines.

The free-freé radiation has emission coefficient

g 1 i
irs(2) = ERAozo beme (2.3.8)
and hence the ionization coefficient due to ionizing free-free photons is

1
agy = §A0z§ E1(o) (2.3.9)

and the emission coefficient from the non-ionizing free-free radiation is

. 1

ity = RAoz; ¥(1- %) (2.3.10).

(1]

Therefore

T2, & (1= )ere/m Bafzo/n?) + 2yt (1 — a2 (=1D)) + fa5 (1 —e7™) g

YoL, eese/’ (E1(20/n?) — Ex(20)) = 125 Ex(20)
(2.3.11)

The value of acsys calculated for the blackbody VMO spectrum is 1.4 X

€(z0) =

10-2°m3s—1, corresponding to W = 5.8 X 10 m~—3 . This corresponds to
T, = 3.3 in eq (2.2.6), although the actual temperature is only of order 1 X 10%K.
The resulting spectrum is plotted in Fig 2.3. As with all the other spectra used in

the numerical studies, it is stored as vS(v) in bins 0.02 wide in log v. Lines are

assumed to be less than one bin in width. For this model, 50 per cent of the flux
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; is in the Lyman line. When the model atmosphere spectrum is used as the input
stellar spectrum rather than a blackbody, the result is very similar.

I now consider a more accurate model for the spectrum, including inelastic col-

lisions with the ground level aﬂd 2-photon emission. Let the jonized fraction be f,

the incoming spectrum be Los(v), where Lo is the total luminosity and s gives the

spectral dependence, and the hydrogen cross-section be a(v) = ag(R/ hv)®g(v),

where ag is the cross-section at threshhold and g is a Gaunt factor for which an

analytic expression is given in Osterbrock (1974). Then in a spherical shell of

radius r-dr to r, and volume Adr, the total energy absorbed 1is
L= (1~ f)nandrLoSy (2.3.12)
where S is the dimensionless integral
(e o]
5 = f o) (RJhv) S g(v)dv (2.3.13)
R/h

and the total number of stellar photons absorbed per unit time is

_ N = (1~ f)nagdr(Lo/R)S2 (2.3.14)
where Sy is another dimensionless integral
o0
S, =/ a(u)(R/hu)"‘g(u)du (2.3.15)
R/h ,
The effective radiative recombination coefficient is

0ess = ®pon-ionising ~ ¥4/ (23.16)

and the radiation emitted in radiative processes is
jrad = Jeont + iline +Jrs (2.3.17)

The energy and ionization balance are then

1— f)nSiLa . .
( Q,r,.zl H — f(1 - f)n* oot + f*n?jrad (2.3.18)
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and
(1= f)nS2Lan
47r3R

= —f(1 - f)nacou + [P0’ acys (2.3.19)

Approximéxtions to the functions jeou and acou are given by Kaplan and

Pikel’ner (1970) as

jeott(20) = Z qn:to-lla - 1/1'12)"/8 exp(—2zo(1 — 1/n?)) (2.3.20)
n>2

and

oot (o) = q.-zg* exp(—2o) (2.3.21)

where ¢; = 4 X 10%A, and the g, are of similar magnitude.

The simultaneous eqﬁations (2.3.18, 2.3.19) determine the temperature and
ionization of the zone, and are solved with an iterative numerical code. The
spectrum emitted by the zone is now determined except for the fact that some
transitions from level 2 to level 1 occur by 2-photon emission from 2s to 1s rather
than by Lyman alpha emission from 2p to 1s. The ratio of 2-photon to Lyman
alpha is discussed by Cox and Matthews (1969) and Osterbrock (1974). It is given
by

fay = S(20) /(L. + fnr(z0)) (2.3.22)

where S and r are slowly varying functions of temperature whose values are ap-
proximately S=0.34 and r=6 x 10~3cm®. This normalises the 2-photon spectrum.

To describe its spectral dependence I have fitted the data of Osterbrock (1974) by
jay(v) ~ (1 — 8abs(hv/0.T5R — 0.5)*) (2.3.23)

where the function abs denotes the absolute value of its argument.

2.8.1 Description of the numerical code

The input to the NEBULA code is the adopted stellar spectral model (BB,
H or He) and the adopted stellar parameters chosen from table 2.2. The program

requests a value of the gas number density and an upper limit to the number of
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radial zones to be calculated. An option also exists to select an inverse square
density profile. The results from using this option will not be illustrated here as
they confirm the analysis of section 2.2 that such a nebula will be transparent
within the assumptions of our scenario.

In each zone of thickness dr the code calculates the effective flux, which I
define to be the luminosity divided by an effective area of the zone

A = (zone volume)/dr = 4xr*(1 — (?) + % (éri)a) (2.3.24)
This is the quantity required to balance the energy per unit volume emitted in a
zone of finite radial extent and allows a consistent (albeit approximate) treatment
of the innermost zones. This number, together with data from the previous zone
on temperature, ionizaﬁon, and the spectrum at that radius, are passed to the
central routine, IONIZE, which uses the old data as a first approximation to the
conditions in the next zone.

IONIZE calculates the integrals S1 and S2 and stores the integrand of S1
at each frequency point in an array; since the neutral fraction is as yet unknown
the absorbed flux cannot yet be subtracted (eq. 2.3.12). The temperature and
ionization are now found by an iterative procedure. The quantities a.zys and acoy
are calculated for the current value of the temperature parameter zo, and then
(2.3.19) is solved for f. The right hand side of (2.3.18) is then evaluated and
compared with S1 to yield an new estimate of zo and the above procedure is
repeated until the energy balance equation (2.3.18) is satisfied to within a tenth
of a percent. A maximum of 20 iterations is allowed, and if the procedure has not
converged by then a message is logged giving the size of the error. In practice this
occasionally occurs in the last few zones where there is very little ionizing flux, and
so the total effect on the emergent spectrum is small. Now that the ionization is
known, the optical depth is calculated and the absorbed ionizing flux is removed
from the spectrum. Important errors would be introduced at this point if the

optical depth at any frequency were greater than 1. This is avoided by choosing
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size of the next zone to have small optical depth at the highest frequency at
ich there is still flux in the spectrum. The optical depth expected in the next
1e is calculated on the basis of the neutral fraction just calculated for the current
ne, and set to be 0.1. This would lead to the zones becoming infinitely small at
e edge of the nebula, and to avoid this two alterations are made to the scheme.
rstly, when the pormalized spectral intensity vs(v) becomes less than 0.5% in
iy bin it is set to zero. This ensures that the zomes are appropriately sized to
ssorb the bulk of the flux. Secondly, the outer NEBULA routine adjusts the
sne size returned by JONIZE to be always at least 0.2% of the radial coordinate
, thus avoiding infinitely thin zones. This scheme leads to absorption of all the

»pizing flux in between 100 and 200 zones.

The final stage of the TONIZE routine consists of calling another routine
EMIT) which adds the emitted nebular spectrum to the spectrum array- The
smission 18 normalized using (2.3.18) and the gpectral dependence of the recombi-

pation and free-free continua is proportional to v exp(—hv/[kT)-

To start the routine off the temperature and ionization of the innermost zone
is first calculated ignoring the effect of collisions, using (2.3.11) and (2.3.19) with
acoll Set to zero. The normal iteration procedure is then entered with this as a
starting point. ‘

The stability of the routine has been checked by setting the collisional terms
to zero and comparing the results with a simple single-zone calculation based on
eqs. (2.2.6), (2.3.2), and (2.3.11). The derived size of the pebula and the effective
recombination coefficient are in very close agreement. It is not clear how one could

treat the collisional effects in a one-zone model.

On the following pages (Fig. 2.4-2.6)1 display the computed spectra from
the NEBULA program for a variety of values of the gas density n: n = 102,104,
and 106¢cm~3. The input spectrum in all cases is the blackbody model for a

VMO with Mz = 1. The normalized spectra are very similar for other choices of
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source parameters and spectral inputs. The displayed spectra show most 2-photon
emission for the lowest densities (cf. (2.3.22)) and practically none for the high
density case. In the n=10*cm—3model, the 2-photon emission basically cancels
the extra collisional line flux relative to the simpler model presented in Fig. 2.2.

The results of running the code for a variety of parameters are summarized in
Table 2.3. The parameters which define the model are My, the gas density n, and
the input spectral shape (BB, H, or He referring to the models discussed in section
2.1). Output results tabulated are L, the fraction of the total flux predicted to be
in the Lyman alpha line, R, the comﬁuted radius of the Stromgren sphere, and
nf, the ratio of gas mass within the sphere to stellar mass multiplied by the gas
density (this quantity is proportional to the variable W introduced at the beginning
of section 2.3). From this I have derived a, the effective recombination coefficient,
and hence T5(eff), the corresponding value of T for use in the equations of section
(2.2). Also tabulated is T5(1 /2), the actual value of Ts at the radius where half
the ionizing flux has been absorbed. The results confirm that the combination nj
is roughly constant for a given mass VMO. The run of temperature with radius is
plotted for several of the models in Fig 2.7.

The numerical results predict a spectrum which has about half its flux in
the Lyman line and half in the recombination continua, with a weak dependence
on density. The conditions in the nebula are summarized by the equations of
section 2.2 with the variable Ts approximately equal to 0.5, although the actual
temperature in the nebula is only 20000 — 30000 K because of the collisional cooling

not taken into account in section 2.2.
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s Sp logn {L R n Beta | Alpha | T5Ceff)|T5(1/2)
(n/1em™® (pe) (em-®) |(107%%m?s ")
R | |
BB 2 0.46 9.0 7500 !9.3  [0.32 10.20
H 2 0.50 9.0 7700 6.6 10.48 20.17
He 2 0.50 9.3 8300 k?.O 1 0.45 10.18
BB IA 0.53 0.44 8800 8.0 10.38 10.25
H 4 0.59 0.41 | 7200 17.1 iD.AA i0.21
He 4 0.57 | 0.42 | 7700 |7.5  10.41 {0.23
BB 6 0.66 0.022 | 11200 |6.3  [0.52 {0.33
H 6 0.73 0.020 | 8200 |6.2 |0.52 10.27
He 6 0.72 0.021 | 9400 |6.2 0.53 0.30
1000 H 2 0.48 12 19000 (8.5 0.36 0.25
H 4 0.55 6.2 25000 |6.5 0.50 0.34
H 6 0.67 0.32 | 34000 |&4.7 ‘0.76 0.48
Table 2.3
2esults from the NEBULA program.
he input consists of Mg, the mass in units of 100 solar masses, Sp, the
pectral model as described in section 2. , and the number density of the

«%s,n,incﬁ3.

L is the fraction of the emiited flux that is in the Lyman alpha line. R
is the radius in parsecs of the jonized region. n Beta is the ratio of gas
s3ss to stellar mass multiplied by (n/1 cm~3 ) to keep the value
zoproximately constant for a given stellar mass (see eq. 2.2.6 ). Alpha
iz the corresponding effective recombination coefficient for the whole
~=bula (total number of recombinations needed to balance photoionizations
&y the stellar radiation field) and TS(eff) is the corre§8fnding effective
42lue of T5 based on the approximation 0% =3,7x10"°Igm* s”'. It is this
 w2lue of TS5 which should be substituted into the eguations of section 2.2.
TS(1/2) is the actual value of the nebular temperature T5 at the point in
 »%e nebula where half the stellar flux has been absorbed.
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8. Evolution of Cosmological Background Radiation

8.1 The Spectrum of the Background Radlation

If there was a generation of stars which formed at high redshift, the radiation
which they produced would be present in the universe today. It is simple to
calculate the total energy density of this radiation in terms of the efficiency of
the sources. Suppose that sources with density parameter 01, (after mass loss)
converted a fraction € of their rest mass to energy at a redshift z. The number
density of the sources at redshift z is Qup.(1 + 2)3/Mc?, and the energy density
falls off as the fourth power of the expansion factor, so the present energy density

of the radiation in units of the critical energy density pcc? is

_ €Ny
Or =17 (3.1.1)

This assumes that the lifetime of the sources is small compared with an expansion
time,

2 < 390f; 230, ~ VPRl (3.1.2)

It is important to notice that, if any high redshift stars existed, this en-
ergy density must be present in the extragalactic background at some wavelength,
whatever sources of opacity intervene. However, if the universe is full of dust, the
radiation may be reprocessed to the far infrared where our observational knowl-
edge is very limited at present. This point has been emphasized by Bond, Carr,
and Hogan (1985).

We can derive predictions which are more directly tied to observation by
adopting a specific spectral model for the sources and explicitly considering ex-
tinction in the intervening medium. We denote by s(v)dv the fraction of the
luminosity between frequencies v and v + dv coming from each individual source

(after modification by its local environment if appropriate.) The intensity of the
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background produced locally is
i(v) = eMc?n,e(v)/4x (3.1.3)
for a population of sources of mass M and number density n.. We represent the

radiation field energy density by the dimensionless parameter

47vi(v)
pec®
= 0, (1 + 2)°vs(v)

w(y, 2) = (3.1.4)

where p. is always the present critical density (not that at redshift z). The time

evolution of the energy density in the expanding universe is given by
afloz=0 (3.1.5)

in the absence of sources, where the comoving occupation number f is related to

the energy density by

_ 8zhv'f (v)
w(u) = ——ca—' p¢;02 (316)
To enable us to work in comoving frequency we define
wolw, 2) = w(v(l +2),2)(1 + 5t (3.1.7)
87h 4
= ——vfv(l+2),2
A1 +2).2)

Since v is independent of redshift, the quantity wo is essentially just f times factors
and is conserved in the absence of sources. Its use will simplify the equations when
I consider sources and sinks of radiation in section 3.3. At present we consider
simple models where the background radiation is produced at redshift z and evolves

without modification as the universe expands, SO

w(v,0) = wo(¥, 2) (3.1.8)
= eN,vs(v(l+2)
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w is also related to the total cosmological density parameter of the radiation
by
Qg = [ wilei(lns) (3.0.9)

For comparison, the value of g for the microwave background is 10“*h;02. If
the present value of w(v) is identified with an observed background, adoption of
a model s(v) immediately leads to Q,, the mass in VMOs. In practice attempts
to detect and measure extragalactic background light are very difficult indeed,
and all observations will be treated as upper limits, yielding upper limits for the
maximum possible mass in an early generation of very massive stars (see Chapter
5).

I consider the four simple models for s(v) described in section 2.1: the black-
body (BB) model, the pure hydrogen stellar atmosphere model (H), the H/He
stellar atmosphere model (He), and one of the models discussed in section 2.3,
which I shall call the 'Recombination’ or R model. The R model is the one plotted
in Fig 2.5. Illustrative predicted background radiation spectra for the BB model
are plotted in Fig. 3.1 for several different redshifts (z= 5,20,100); the spectra have
been normalised by setting 1, =0.1 and the microwave background is included on
the plot for comparison. The VMO n_;odel adopted is the one for 10°M, whiéh
approaches the limiting values of the f parameters define in chapter 2. This model
is labelled IIIVMO in the ‘Source’ field of the diagram headers. Fig 3.2 illustrates
the spectra obtained by using the R model; obviously the flux is at lower frequency
for a given redshift. Consequently, at a given frequency, the corresponding redshift
of any Population III background radiation is lower for the R model than the BB
model and hence the value of 2, needed to account for a given flux is lower, except
insofar as this effect is mitigated by the smaller continuum flux of the R model. .

Fig 3.3 shows the effect of dmnjmj the source parameters from those of the
VMO model (dotted line) to those of a 100 Mg VMO (solid line), keeping the

value of 1, constant. The BB spectral model has been used. The change in the
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‘f parameters’ introduces only neglible changes in the resulting spectrum. This
important result means that our results are insensitive to the mass spectrum and
typical mass of the VMOs and only depend on their total mass density as measured
by the parameter {1y . I will henceforth adopt the 10° Mg MIVMO model for all
the remaining Population III background calculations in this chapter.

Fig 3.4 compares the four different spectral models, all plotted for 0, =0.1,
and z, = 20. Note that this plot is log-log while Fig 2.2, which illustrates the
normalized spectral models is linear-log. The low frequency cutoff in the R model
is arbitrary and unphysical, but the high frequency cutoff occurs at the Lyman
limit. This plot well illustrates the enormous amount of ionizing flux produced by

the other three models.
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3.2 Opacity of the Universe at high redshift

In chapter 2 we considered the effects of diffuse material on the individual
spectra of each of the sources. We now consider the effect of more widely dis-
tributed diffuse material on the evolution of the background radiation as a whole.

3.2.1 Absorption by neutral hydrogen in the Universe

We extend the calculation of section 2.2 using the same notation, with g =
Q,/9Q,. If the condition (2.2.18) is not satisfied for the gas surrounding the VMOs,
the ionizing radiation from the VMOs will ionize the universe completely. However,
even though the recombination time is not short enough for the hydrogen to absorb
all the photons within the lifetime of the stars, they may still be absorbed after
the sources have turned off. Since the stars emit a total of Nt,.s photons, the
universe will be filled with a photon number density Nty,sns. A photon travelling
through clumps of density n with a volume filling factor 6—1 will spend a fraction
1/6 of its time in clumps, so in a time ¢ its path length through the dense gas is

ct/6 and the optical depth is
r=(1-z)nogctf6 (3.2.1)

where x is the ionized fraction. There are rNtmsna /t ionizations per unit volume
per unit time in the gas . Equating this to the number of recombinations in the
gas gives a total photon optical depth for time t

r= (“"2/6> L (3.2.2)

Nn‘ tms

sor>1if
§ > (N Jan.)(mu [BYaM)? (tms/t). (3.2.3)

If ¢t = t,,5, We recover the previous analysis. This condition can also be expressed
by saying that each atom must recombine at least as many times within the main
sequence time as the total number of ionizing photons emitted per atom in the

gas. If t is the expansion time, we obtain instead
§>22x% 106T;’-8(ﬂy,,)-2(n,h§0)—‘(nohgo)%(l +2) SNt (3.2.4)
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as the condition that the photons will be absorbed within an expansion time. If the
photons cannot be absorbed within a time of order the expansion time, the bulk
of the photons will be redshifted below the L&man limit without being absorbed.
Hence the spectrum may reach us largely unaltered if the gas associated with the.
VMOs is not so highly clumped that its recombination time is very short, the

clumpiness being given by § above. The ionization of the clumps is found to be

1—2:(. = )(‘W”M)a (3.2.5)
Noctys mpg

=2 x 10~ 26(T 02 Y SN 1Y)

given by

If we identify the clumps with the mass in galaxies now, then § = 0.1 at
most, so for O, =0.1 we get § = 10°(1 + 2)~'%, which is much higher than the
overdensity of gas in galaxies relative to the background at any redshift. If the
gas is not associated with galaxies, then & could be as small as 102 at z=100, for
large B, and this is just plausible. In Fig 3.5 1 plot the (2,0, ) regimes in which
the universe is ionized for an assumed amount of gas 0, = 0.1 and clumpiness
factor 6. I also indicate the regime in which the absorption occurs in the locality
of the sources. This diagram has been plotted assuming Ts = 0.1 and is valid
providing Q. /Qy > 3 X 10—, which is always true if we are trying to provide the
dark matter with €1, . If the latter condition is not satisfied, then ty.. > tms and
there are not enough photons produced by the star over its lifetime to ionize all
the atoms around it and the ionizing flux is all absorbed locally (Couchman 1985).
The dotted lines in Fig 3.5 indicate where this constraint lies for different values
of 5. Below these dotted lines the flux is always absorbed locally.

3.2.2 D.ust absorption in the Universe .

Now let us consider the effects of dust in the universe, as the photons are
redshifted to the present epoch. There will be absorption.due to both any dust in

a uniform intergalactic medium, and to dust in galaxies along the line of sight. As
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pointed out by Ostriker and Heisler (1984), the patchiness of this latter effect may
allow it to obscure high redshift objects without the revealing presence of partially
obscured objects at lower redshifts. The obscuration is uncertain due to our lack
of knowledge of the evolution of dust content in galaxies, and of the size of the
absorbing region in a typical galaxy. Ostriker and Heisler pointed out that in an
exponential disk galaxy the radius corresponding to a given optical depth throﬁgh
the disk will increase (due to the increase in dust opacity with the frequency of
the photon) at high redshift. This leads to very high effective cross sections for
high redshift galaxies, and a high covering factor of the galaxies on the sky at
a given redshift. However it is not clear that the gas and dust distribution in
galaxies follows the light distribution in this way. In fact, modern observations
indicate (Blitz, Fich and Kulkarni 1983) that the hydrogen surface density in our
galaxy is fairly constant out to a radius of 20 kpc and then cuts off sharply. Of
course, it may just be that the hydrogen is jonized beyond this point, but the
warping and scalloping of the disc in this region suggests that the galaxy may
have a recognizable edge rather than just going on for ever. This density proﬁie,
provided that the dust-to-gas ratio does not increase with galactocentric radius,
will result in a galaxy effective radius that is constant with redshift (although
the optical depth through it will still increase, the covering factor due to galaxies
will not be so large). At high redshifts, more of the mass of a galaxy may be in
diffuse form, but the dust-to-gas ratio may be smaller, and the size of the dusty
region may be smaller if infall and collapse are not complete. We therefore believe
that the covering factor calculated below is a not unreasonable estimate. At the
Lyman edge, neutral hydrogen absorption will be more important than dust (ata
normal dust-to-gas ratio of order 10~2) provided the peutral fraction is more than
5 x 10~%. Within an expansion time of the Population III era, when the universe
might be filled with large pumbers of ionizing photons, the neutral fraction could

be significantly less than this, so dust might still be the most important opacity
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source even at those high frequencies.

We adopt representative values of galaxy radius r =20 kpc, area Ag = rr3,
disc thickness H= 200 p¢, optical depth through the disk re(v) = k(v)ymuxnH
or rg(v) = 0.5(x/0.01)(u15), where v = 1081 sHz and comoving galaxy number
density ng = 0.01 Mpe~3.

Consider a disk galaxy at an angle 8 to the line of sight; it has projected area
Agcosf, and there are ngd(cost) such galaxies per unit volume, each with optical

depth along the line of sight rg(v)secd . The covering factor is then

z
N =%ncAGcHo‘l f 1+ z)*dz (3.2.6)
0
—0.025h52 (1 + 2)"° — 1)

and the optical depth along the line of sight at comoving frequency Yo = 1045y, 5Hz

is

z ’
(vo, 2) —ngAara(vo)eHs ! / (14 2)'*dz (3.2.7)
0

—0.015015(x/0.01) A5 ((1 + 2)+% —1)

assuming that z is large enough that there are always several galaxies along the
line of sight, i.e. N > 1 or z > 11 (in agreement with Bond, Carr, and Hogan
(1986))-

For the uniform intergalactic med‘mm the optical depth may be quite large.
Limits from reddening in QSO0s (Wright 1081) suggest that any intergalactic dust

has g < 1.2 X 10—*. Assuming this maximum amount gives

B4 pot((1 4+ -1) (3.28)

r(v, 2) = 0.24v15 5=

(see section 3.4). Hence the maximum possible optical depth due to a dusty IGM
could be substantially larger than that due to galaxies. At high redshifts such
an obscuration would be of great importance. The Lyman limit is at & comoving

frequency of v15 = 3.3(1+2)7%, corresponding to an optical depth from eq. (3.2.8)
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of 0.621% at large z. This would completely obscure sources at high redshifts.
However, this assumes that the dust existed at these redshifts. If the Population
11 objects form well before galaxy formation, the upper limit in the integral should
probably be the redshift of galaxy formation rather than that of the sources.

In summary, galactic absorption must exist but may not cover the .sky; uni-
form dust would be important but may not exist. It appears impossible to resolve
the issue of the importance of dust absorption at present. In later sections we
present results assuming no dust, dust forming at z=3, and dust forming at the
same epoch as the stars, to illustrate the likely range of effects. In Fig 3.6 I plot
the (z,{24) regimes in which the universe is opaque according to this calculation as
dotted lines. Fig 3.6(a) gives lines corresponding to r(v) =1 at observed frequen-
cies logv =12, 13, 14, 15, and 16. For a given 14 the graph gives the redshift out
to which the universe is transparent at a given observed frequency. The lines in Fig
3.6(b) correspond to unit optical depth at constant comoving frequency, allowing
one to estimate the redshift beyond which a source peaking at that frequency will
be obscured. The solid lines in Fig 3.6 are discussed in section 3.4 and refer to an

alternative model for the opacity law.
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Fig 3.5 Hydrogen Absorption

L
100

142

Absorbed locally

B

Not absorbed

|

o0l 0Ol

TEE Y .Llllll .Llllll 'LHIIII [TTEE Lllllll Lllll] Llllll Lllllll Lmn

}

10 10°0g_0l,_0lg0}p Ol o 0lg_0lg_Ol, -0k, -04, -0}

e/’v

6L

(PRI IR



3.6 (&) -Dust Absorption (Observed v)

Py

- 63




Z+ |

o0} .01 . J

‘Jl.l-lal]ll.lll.lll-.l'-l'lﬂlllllalilll_c P ade ed hadbadadis Renlid - - - g = am wm e =

B

JLMLM_J——hLQJ——L—JLu;L

_-u¢5¢;_u_

~ .

-’ o wmlom e o b e - omlom o > ol aNes @ @ o @ @

-~
~,
do o - emlas an tem

(4 Buisowog) uondiosqy ng  (9)9°e n,t

01

50l

-0l

,-0l

c-0l

SyPy

G




3.3 Modelling the Spectrum in a Dusty Unlverse

If we take into account the absorption due to the intergalactic medium, or
consider Population III star formation over an extended redshift range, we must
solve the radiative transfer problem. Since the neutral hydrogen in the IGM
cannot have a large optical depth (eq (2.2.18) with 6 = 1), we only consider the
absorbing effects of dust, which is assumed to reach a steady state on timescales
much shorter than the expansion time. If the epochs of Population IIT and dust

formation are ¢, and &4 respectively, to is the present, then
to
w(v,0) = ol 2(ts)) + / (Fa( 1) + Falts 1))t (3.3.1)
te
and the source terms are
Fu(v,t) = eQavs(v(l + z))[tms (3.3.2)
for t, <t <te+tms and
Fi(v,t) = Qapc(1+ 2)*k(v(1 + 2))xe(weq (T v(1+2))(1+2) 7" —wo(¥ Z)) (3.3.3)
for ¢ > tg; here the dust temperature T is found from
‘ oo
/ Fy(v)d(lav) =0 (3.3.4)
0

and the dust emission follows a Planck distribution

8xh vt
weq(T>¥) = pccS exp(hv[kT) — 1

(3.3.5)

modified by the dust cross-section as shown in eq.(3.3.3).

In general equations (3.3.1) and (3.3.4) must be solved numerically. In order
to adequately test the pumerical code, it is crucial to find an analytic solution to
the equations, although this need not be based on a physical model. In fact an

approximate anaiytical solution may be found with a simple and physically quite
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reasonable model, involving blackbody input spectra and a linear dust opacity
law.

First, as in chapter 2, we adopt the approximation that k(v) = (v/vo)Ko-
Then

' 3
/ e (0(1+2))weq (T p(1+2))(1+2)"*d(lnv) = 4:;(5)%:101; (Tuﬁ%—zi) (k0 /v0)(1+2)
(3.3.6)

which allows us to find T explicitly in terms of the incident spectrum,

TS = 0.04(h/k)° (-‘é’f%) / wo(v, 2)dv (3.3.7)

Next adopt the blackbody model for the source spectrum, and omit the cosmic
microwave background for simplicity. We choose z. > 24 and assume ¢y € s SO

that after z4 there is no further contribution from the stars. Then

_ GQ* 15 y4
wo(vy z4) = T -1 3.3.8
where
_ hv(l+ )
y) = =4 3.3.9
The radiative transfer equation (3.3.1) can be written
dwolv
-67(%;))_ = weg(T/(1 + 2),v) — wo(v, 2) 3.3.10
where the optical depth between 2. and z is
Z S dt
r(v,2) = decc/ k(v(1+2))(1 +2) d—z-dz (3.3.11)
z

kT, -1 '
= %ndpccno —%H;l(lco/llo)___f_(_l_-_;—z—‘—)———((l + zd)2-5 - (1 + z)?.s)y
= A(2)y
where the approximate cosmology of section 1.5 has been used and y(v) is defined
in eq.(3.3.9).
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If we assume that the stellar radiation and dust emission do not overlap in

frequency, then above some comoving frequency V1
wo (v, 2) = wol¥, zd)e”’(""). (3.3.12)

For the moment we treat the case where the universe is optically thin to the dust

emission, so 7 is small for v < v;. In this case we can write

/0 ® oL+ ol ) = T g S m(l+z) () (3312)

where the integral

0 o4 ,—AY
[Pyt My
I0) = fo =7 (3.3.13)

can be expressed in terms of the hexagamma function v(# (z) (Abramowicz and
Stegun 1965),

() = -4y +A) =4 Z(A + k) (3.3.14)

Note that I(0) = 4!¢(5) as expected. Fig 3.7 shows (I()‘)/4!)1/5 as a function of
A

Combining equations (3.3.6) and (3.3.12) we now derive an expression for the

dust temperature,

((1 - z)) _};_P oI (—ig_%‘%'f $(5) & Z(A(z) +k)7° (3.3.15)

Substituting in numerical values,

o ;
1fz=45(n. Ko fefr) b1+ 22) 7 (—%—Z(A(z)ﬂ)"') K (33.16)

As the stellar radiation is absorbed, T/(1 + 2) slowly falls from its initial value.
To solve for the spectrum we can take T/(1+2) =Th —constant as a reasonable
first approximation. Then the solution of (3.3.10) is

wo(vy2) =(1— e~ T )w,o(T/(1 + 2), v) + e~ "W wo (v, 24) (3.3.17)
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Adopting this approximation we can account for reabsorption by the dust of its
own emission. Define

6= (Th(1+ 2:) | T=)A(2) (3.3.18)

so that 7 = (8)(hv(1+ 2)/kT). Then the absorption of the dust emission becomes
important when I (6) departs from unity. If T} is the temperature derived without

reabsorption then a first approximation can be obtained by iterating
T8y = (1 - 1(6) [1O)T® + T1 (3.3.19)

which is the integral of (3.3.17) over frequency. With our linear opacity model
the spectrum is effectively thermalised except at wavelengths short of the peak,
and in high optical depth cases the dust temperature quickly drops to the thermal
equilibrium value. With the more accurate opacity law of section 3.4, the spec-
trum is not so smooth but the dust temperature shows the same behaviour. Fig
3.13 shows the calculated spectrum for such a case compared with the microwave
background spectrum (see end of section 3.4).

At low redshifts the universe is optically thin and so the value of T/(1+2)
tends to a constant in all cases. Of course, the microwave background should
be included in the initial spectrum wo (Vs #(t+)); the dust temperature then never
drops below 3(1+z)K. |

If the stars form over an extended redshift range, then in general the most
recent epoch will dominate due to the (1+2) falloff in energy. However for the
recombination spectrum model we can make a useful approximation; if we consider
just the Lyman & line (which contains half of the flux in our simple model) then
the intensity of the background at a particular frequency is simply proportional to
the star formation rate per unit redshift, ¢(2) evaluated at the redshift at which
the line has that comoving frequency- Thus an observed set of limits as a function

of frequency can be directly inverted to give a limit on ¢(z) (Chapter 4).
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8.4 The predicted form of the background

8.4.1 The code

In this section I describe the pumerical code to solve equations (3.3.1) and
(3.3.4). I have since found out that Negroponte (1986) has written a similar code
to solve the same problem. I developed my code independently as the natural ex-
tension to the work I had already carried out on background radiation as described
in sections 3.1 and 3.2, and chapters 4 and 5, which predates the results of Ne-
groponte for the dust-free case. His results for the evolution of the spectrum in a
universe with dust were, however, obtained well before mine although his preprint
was not released until after my calculations were complete. My code incorporates
a background spectrum covering any given frequency range, but I have used a
spectrum covering the range Vv = 10!° Hz to 10'7 Hz in comoving frequency. The
values of wo(¥, 2) are stored in an array with bin size equal to 0.02 in logv. The
redshift evolution in frequency is treated simply by altering the origin of the array
index at each redshift step.

The inputs to the code include the input source spectrum model, which for
this discussion is one of the Population III models discussed in Chapter 2, but in
principle could be the normalized spectrum of any supposed radiation source. The
parameters of the source are defined by specifying its lifetime and efficiency €. The
cosmological model is specified by Qo and Hy to describe the overall Friedmann
universe, {1, and z, to define the density parameter and formation redshift of the
sources, (g and 24 to define the density parameter and formation redshift of the
dust. The dust opacity law can also be selected, and is discussed below. Finally

an initial integration step size is chosen; the redshift parameter used is
¢ =log(l+2) (3.4.1)

and the step size for the first part of the run is a constant increment in ¢.
Before running the code the spectrum is initialized and a 3K blackbody can

optionally be added to the spectrum to represent the microwave background. The
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code evolves the spectrum from the initial value of ¢ = log(l + 2) to ¢ = 0.
The cosmological time ¢ is evaluated at each step by solving the exact solution to

Friedmann’s equation,

1 Q .
Hot = Em(ﬂﬂh ¢ - ¢) (3.4.2)
=1 __l_-_ 00 _ .
(1+2)"" = 2-—-—————(1_ a )(cosh ¢ —1);

this has been used unless 2(1 — Qg )@ ~!(1+ z)~! < 0.01, when the solution
200~} -3
Hot = -3"n0 (1 + Z) (343)

has been used.

The size of the integration step in time, dt, is also evaluated. In each step
the contribution from the stellar radiation is added in provided ¢ + dt < tsx + tms.
If the stars expire within a particular step their contribution within that step is
reduced by the appropriate proportion. In this way the code can treat stars which
have lifetimes longer than the expansion time, and we are not restricted to the
instantaneous approximation used earlier.

If z < 24 the step size for the zone is changed so that the optical depth to
the dust is only 0.1 for the zone, at the highest frequency at which the flux in
the background is non-zero. The code now calculates the dust absorption and
emission.

8.4.2 The Dust Opacity

The observationally determined parameters needed to normalise our dust
opacity law are: firstly, the dust optical depth at V per unit hydrogen column
in our galaxy, found from the optical depth per unit distance Cy compared with
the mean hydrogen density n; secondly, the dust-to-gas mass ratio in our galaxy,
Xgat; and finally, the variation of optical depth with frequency. This is tradition-
ally expressed in terms of the selective extinction A)/Ep_v, the ratio of total

extinction at A to the selective extinction of B relative to V. We normalize the
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optical depth to the value of the extinction optical depth at a fiducial frequency
vp = 10'%Hz, denoting this dimensionless cross-section by a(v) = r(v)/r(vp),
and convert from selective extinction using the ratio R = Ay [Ep-v. To obtain
" the absorption optical depth relevant to the background light calculation, where
scattering has no net effect, we must multiply the extinction value by (1-F),
where F,, is the frequency-depen.dent dust albedo. Hence the value of o as I have
defined it is not 1 at vp in this case. These quantities enable us to calculate the
dust optical depth for a given dust mass column assuming that the nature of the
dust particles is the same as in our galaxy. We have

Ay Cy
REp_v nXgalMH

dr(v) = (1-F)) padr = Kppadr (3.4.4)

for intergalactic dust of density pg over coordinate path length dr.
We adopt (Spitzer 1978) R = 3.2, Cy = 1.9 mag/kpc, n=1.2 em™3, Xgal =
0.01, and Ap/Ep_v =58 ; then kp = 5700 m? [kg and

dr(v) = 4.9 x 10°Qahso(1 + 2P o(v(l+ z))(—i—(—%ﬂ (3.4.5)
for an element of look-back time dt, giving a total optical depth
7(v) = 4.9 x 10°Qghso /(1 + 2)° G—%Izit—)-a(u(l + z))dz (3.4.6)

Fig 3.4.5 has been used to calculate the solid lines in Fig 3.6, which give unit
optical depth for the D2 model for given (4,z,v. The dotted lines give the cor-
responding curves for the linear model and were discussed at the end of section
3.9. The main difference is that the universe is more transparent at high fre-
quencies because the yman continuum cross section is taken to be constant rather
than increasing. Also, the universe is more transparent at comoving far infrared
frequencies corresponding to the peak in the dust emission.

For the frequency dependence of the absorption I have adopted the extinction

law calculated by Draine and Lee (1984) for a graphite and silicate mixture. In

72




the optical and ultraviolet I have used the values for the extinction tabulated by
Savage and Mathis (1979) rather than the curve calculated by Draine and Lee to
fit those values, but I have used Draine and Lee's estimate of the albedo at all
frequencies to estimate the absorption from the extinction. The extinction in the
extreme UV is completely uncertain; it must flatten off at some wavelength of the
order of the smallest grain size but it is still rising at 1000A . I adopt two extreme
cases to explore the sensitivity of my results to this uncertainty; model D3 is linear
in the extreme UV, while model D2 is linear up to the Lyman limit at 3.3 PHz
and set to be constant beyond this value. At low frequencies (v < 0.01PHz) I have
adopted a v? law in agreement with the Draine and Lee model. The value of o(v)
versus v is plotted for model D2 in Fig. 3.8

To evaluate the dust temperature in each redshift zone, I evaluate the ab-

sorbed energy
pa = [ 00)I()d(¥) (3.4.7)

where f is the spectral energy density (inJ m~3), and compare it with a look-up
table of pg(Ts), the energy emitted (the same integral evaluated with a Planck
distribution at temperature Ty). The dust temperature is always at least 3K
because of the microwave background, and cannot exceed some melting point
T.neit- The appropriate value of Typeit is unclear but I arbitrarily adopt Tnmet =
2000K (The dust is never this hot in practice) and evaluate 200 values of pp
equally spaced in log Ty between these temperature limits. Linearly interpolating
between these values to find Ty for a given pa gives energy conservation to sufficient
accuracy at each step to ensure that the total energy remains constant to one per
cent in the whole integration.

The same routine can be used for putting dust into the nebular problem by

setting a scaling variable. In this case the dust melting point is an important issue.
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3.4.8 Results

In this section I present the predicted spectral form and intensity of the extra-
galactic background light observable at the present epoch which would result from
a Population III generation of very massive stars. The results for a dust free uni-
verse, when the effects of finite stellar lifetime are included, are indistinguishable

from the simple models of section 3.1.

First I present the effect of varying the dust opacity law in a given cosmological
situation. I choose a low redshift Population III with the dust and stars at the
same epoch to maximize the importance of the high frequency opacity, with {1,
=1, Qg = 1074, 2z, = 24 = 5. In fact, the predicted spectra (Fig 3.9(a)) from
models D2 and D3 are quite similar, and much closer to each other than to the
linear absorption law model DOA. The D3 model has a hotter dust temperature
at first (see Fig 3.9(b) which plots Tu /(1 + 2) versus z) but both have the same
present (zero redshift) temperature; the latter is hotter than that predicted for

the linear case. From now on I shall adopt the D2 law unless explicitly stated.

Next I present a sequence of models with gradually increasing dust abundance
at fixed redshifts 2, and 2q, showing the predicted background spectra and the
redshift evoultion of the redshifted dust temperature. Fig. 3.10 is for 2z, = 50,
z4 = 5 which represents a Population III background being absorbed by dust
produced in galaxies forming later; Fig 3.11 is for z, = 24 = 5, dust and stars
having the same origin. Fig 3.12 has z. = 24 = 20. The dust abundances chosen
are {1y = 0,1075,5x 107%, and 10—*. The results show that dust abundances of
about 9 = 10~% or greater are required before the effects of absorption become

significant.
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