1. INTRODUCTION

The United States Department of Defense entered 1983 with something in the region of 60 satellites in operational use. They ranged from a weather satellite that had been in space for just 11 days to a navigation satellite that had been in daily use for over 15 years. Some programs were in fine shape, with a full complement of prime satellites, backed-up by in-orbit spares, while others were sorely in need of replenishment.

1983 would see eight military space launches, covering a wide range of missions, and while all these appear to have been generally successful, there were also some disappointments. What had been planned as the first all-DOD Space Shuttle flight was first re-oriented, and then cancelled, and launches to synchronous orbit for at least one other program were put off until 1984.

This article reviews U.S. military activities in space during 1983, and is divided into two main parts. The first part (section 2) describes the programs that were in operation as the year began, and gives details of all the functioning spacecraft they involved. It also considers what launches could have been predicted for the year at that time. The second part (section 3) discusses the events in space of 1983, and is concerned for the most part with the missions launched during the year.

2. MILITARY SPACE PROGRAMS AND THEIR STATUS AT THE END OF 1983

The activities of the U.S. military services can be divided into eight categories of operational programs, and research and development. The division is to some extent arbitrary, but it provides a useful way of reviewing the total space effort. The following sections describe the categories in turn, and also what launches could be predicted for 1983 as 1982 drew to a close.

2.1 Photo Reconnaissance

Photo reconnaissance programs have accounted for more launches than any other item in the entire U.S. space effort: by the end of 1982 there had been 365 launches in support of photo reconnaissance programs, accounting to over 50% of the whole U.S. total.

Initial development efforts started in the late 1950s, and the first test satellite, Discoverer 1, was launched in February 1959. Eighteen months later a great step forward was taken when Discoverer 14 completed the first fully successful mission, culminating in the mid-air recovery of a capsule containing reconnaissance photos taken from space. Two parallel operational programs followed, one producing high resolution views of small areas ("close look"), and the other providing low resolution coverage of large areas ("area survey"). These two programs continued through the 1960s, averaging nearly 30 launches a year between them, but in 1971 a new type of photo reconnaissance spacecraft was introduced. Known as Big Bird, it combined the two functions of the earlier programs, and in its wake the area survey missions were phased out and the close look missions reduced in frequency.

Big Bird was the mainstay of photo reconnaissance activities for five years, until the most recent class of satellite, the KH-11, was introduced. Photo reconnaissance operations are now carried out to a regular pattern: two KH-11 satellites, whose useful lives are measured in years, are kept in orbit all the year round, carrying out routine, day-to-day observation. The imagery they produce has only moderate resolution, so when more detailed views are required, a Big Bird or close look satellite is launched. These supplementary flights average about one a year, alternating between
the two types of vehicle. Big Bird flights last six to seven months, giving high resolution coverage; close look flights provide even better resolution, but only last three to four months.

All three types of satellite are de-orbitcd at the end of their missions, so it is a simple matter to determine what operational satellites there are at any given time, simply by looking at those which are in orbit at that time. At the end of 1983 the only photo reconnaissance satellites in orbit were the two KH-11s, whose orbital data was as follows:

KH-11 Satellites at 31 December 1983

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Perigee (km)</th>
<th>Apogee (km)</th>
<th>Inclination (°)</th>
<th>Period (days)</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH-11A</td>
<td>2760</td>
<td>4130</td>
<td>97.0</td>
<td>99.00ams</td>
<td>16</td>
</tr>
<tr>
<td>KH-11B</td>
<td>2610</td>
<td>4140</td>
<td>97.0</td>
<td>99.00ams</td>
<td>12</td>
</tr>
</tbody>
</table>

1983-85A and 1983-111A were the fourth and fifth KH-11 satellites, and the lives of their predecessors had been 75, 30 and 13 months respectively. It had been something of a surprise when the third KH-11 was de-orbitcd after only 13 months in space, but an analysis of its orbital behaviour suggested that it had suffered some sort of failure (probably in June 1982) which had led to its being ended prematurely. One could therefore expect the trend of increasing lifetimes set by the first two craft to be continued by 1983-85A and 1983-111A, with the former operating until the summer of 1984, and the latter into the autumn of 1985. In other words, no KH-11 launches seemed likely for 1983.

A supplementary mission, on the other hand, did seem likely in 1983, following the pattern of previous years. In 1980 there had been a Big Bird mission, in 1981 a close look, in 1982 a Big Bird, and so the obvious candidate to fly in 1983 was a close look satellite.

Having said this, reports in the press had stated that two Titan 34C would be launched from Vandenberg AFB in 1983. Now the Titan 34C launch is being produced in two variants, an East Coast version and a West Coast version. The East Coast version is intended to take over the role of the Titan JC, sending payloads to synchronous orbit orbit from Cape Canaveral. The West Coast version is to take over the role of the Titan 30, sending payloads to low polar orbits from Vandenberg. As of the end of 1982, only one Titan 34C had been launched, and this was an East Coast version, but it had been stated that no test launches were planned—all flights would carry operational payloads.

The only payloads that had used the Titan 30 had been Big Birds and KH-11s, so presumably the payloads for the two reported Titan 34C launches in 1983 would be vehicles of these classes. A Big Bird payload for one flight seemed understandable, producing a repeat of 1979, when both a close look and a Big Bird were orbited, but just what payload the other launch would carry was not at all clear.

5.2 Missile Early Warning

Missile early warning satellites have the same ancestry as photo reconnaissance satellites, but their early efforts were much less successful. Severe problems were experienced with the first few test missions, and the programme was cut back to a research and development effort in 1962.

The search for solutions was ultimately successful, and the first launch of a new programme incorporating these came in August 1966. Known as Program 94D, this was primarily a proof-of-principle project, and the full operational programme followed two years later. This latter programme is now referred to as the Defense Support Program (DSP), and centres on the use of large satellites deployed in synchronous orbit.

DSP satellites initially occupied two stations in synchronous orbit, one over the Indian Ocean to watch for ICBM launches, and one over South America to watch for SLBM launches. However, during the 1970s the Russians introduced a new class of SLBM which had a much longer range, so that the submarines that carried it could operate much further from the U.S. coastline.

To counter this, the South America DSP station was replaced by two stations, one over the west Atlantic to watch for launches from that ocean, and one over the East Pacific to watch for launches from that ocean. Figure 1 shows the areas that are visible from the three standard DSP stations.

By the end of 1983 there had been ten DSP launches, but only five of the satellites remained in operational service. Just which satellites are...
operational at any particular time can be deduced from their orbital behaviour, in the following way. A satellite in synchronous orbit is subject to perturbations caused by the irregular shape of the Earth, and the attraction of the Sun and the Moon. The effects of these are to make the satellite drift off station, and every couple of months a small manoeuvre is required toudge it back to its desired position. It is now the practice of the USNP that whenever a synchronous orbit satellite has completed its useful life it is ejected out of synchronous orbit, so as not to interfere with other operational satellites. Monitoring the locations and drift rates of these satellites provides a simple indicator of their status.

The USNP satellites that were operational at the end of 1982 consisted of three primary and two in-orbit backups, as follows:

USNP Satellites at 11 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Family</th>
<th>Apogee Inclination</th>
<th>Period</th>
<th>Station</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiros</td>
<td>1977-07A</td>
<td>35,797km</td>
<td>35,797km</td>
<td>4.4°</td>
<td>14:26 pm</td>
</tr>
<tr>
<td>1981-25A</td>
<td>35,777km</td>
<td>35,790km</td>
<td>5°</td>
<td>14:26 pm</td>
<td>114°</td>
</tr>
<tr>
<td>1981-39A</td>
<td>35,799km</td>
<td>35,798km</td>
<td>1.8°</td>
<td>14:35 pm</td>
<td>70°</td>
</tr>
<tr>
<td>Weather</td>
<td>1976-59A</td>
<td>35,775km</td>
<td>35,797km</td>
<td>4.9°</td>
<td>14:36 pm</td>
</tr>
<tr>
<td>1979-21A</td>
<td>35,797km</td>
<td>35,848km</td>
<td>0.9°</td>
<td>14:36 pm</td>
<td>85°</td>
</tr>
</tbody>
</table>

No figures have been published for the design lifetimes of the USNP satellites, but comparison with contemporary vehicles would suggest a figure of about 5 years (i.e. 60 months). Whatever the actual value, 1976-59A and 1977-07A must have been approaching the ends of their useful lives at the end of 1982, and replacement launches seemed to be imminent. However, 1981-39A had used the last Titan 3b launcher and any subsequent launches would have to use the East Coast version of the Titan 3c. Besides the two West Coast Titan 3Cs to be launched in 1983 that have already been mentioned, there were reports of one, or possibly two, East Coast launches in 1983. The one definitely planned launch would carry two communications satellites, but no payload had been indicated for the second launch, should it occur. In fact, there are only two possible candidates for such a launch - a USNP satellite of a Chalti ELINT satellite launch vehicle.

(see section 2.3). At the end of 1982 there was no obvious preference for one or the other of these programmes, so a USNP launch in 1983 appeared to be a reasonable possibility at that time.

7.3 Electronic Intelligence (ELINT)

Electronic intelligence satellites, sometimes referred to as 'surveill', made their debut in 1962, with the first in a series of missions characterised by medium altitude, long life circular orbits. A year later a complementary effort began, in which small sub-satellites were deployed in similar orbits after ejection from photo-reconnaissance satellites. Both programmes continued at a steady pace until 1971, when the last launch dedicated wholly to an ELINT mission took place. Although the sub-satellites continued to appear, the satellite flights ceased to have come to an end.

At just about this time the rule of carrying ELINT sub-satellites was being taken over by the Big Birds, so it was suggested that with the change-over a new class of sub-satellite was introduced which performed the missions of both the earlier sub-satellites and the dedicated satellites. At the end of 1982 a total of 11 ELINT sub-satellites remained in orbit, three of the earlier class and eight of the Big Bird related class. There is no way of telling whether a particular sub-satellite is still functioning from its orbital data alone, as the craft do not manoeuvre during operations, or de-orbit at the end of their lives. However, their instruments probably do not function for more than an average of about five years, and at the end of 1982 there were just four sub-satellites with ages less than this figure. In the absence of any other indications, these can be considered to be the operational craft at the year's end. Their data is listed below.

ELINT Sub-satellites at 11 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Family</th>
<th>Apogee Inclination</th>
<th>Period</th>
<th>Station</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976-59B</td>
<td>141km</td>
<td>35,643km</td>
<td>95.8°</td>
<td>96.3°</td>
<td>57</td>
</tr>
<tr>
<td>1979-59A</td>
<td>54km</td>
<td>35,643km</td>
<td>95.8°</td>
<td>95.7°</td>
<td>45</td>
</tr>
<tr>
<td>1980-50C</td>
<td>132km</td>
<td>35,643km</td>
<td>96.6°</td>
<td>112.6°</td>
<td>10</td>
</tr>
<tr>
<td>1982-41A</td>
<td>69km</td>
<td>369km</td>
<td>96.9°</td>
<td>98.6°</td>
<td>8</td>
</tr>
</tbody>
</table>

Any Big Bird launch that is made nowadays can be expected to carry one,
or possibly two E Tonight subsatellites, and as has been noted earlier, a big 2nd flight in 1968 appeared a strong possibility.

In 1979 reports started appearing of a new dedicated class of E Tonight satellite code-named Rhyolite, which had consisted of four launches between 1971 and 1975. Unlike the standard E Tonight craft, whose object was to monitor radio and radar traffic, Rhyolite was intended to intercept telemetry from Soviet missile tests. The Rhyolite satellites operated from synchronous orbit, following launch by Atlas-Agena vehicles, and these two facts led observers to classify them at the time as a continuation of the Program 749 early warning series. Now it was clear that they had a quite different role.

The reports indicated that two of the satellites were prisms, and two were back-up; after the fourth launch the Atlas-Agena pad at Cape Canaveral had been de-activated, and so no further launches could have been made. Very little other data on Rhyolite has come to light, and the satellites' orbital data is extremely sketchy, having never appeared in the standard sources. The table below gives their reported positions, but it has not been possible to verify them. Figure 2 shows the extent of the areas that they would be able to cover if these positions are in fact correct.

Rhyolite Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Station</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prism</td>
<td>45ºE</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>115ºE</td>
<td>67</td>
</tr>
<tr>
<td>Prism/Da</td>
<td>7</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>57</td>
</tr>
</tbody>
</table>

Since the satellites are never listed in the Two Line Orbital Elements it is not possible to determine whether they are station-keeping or drifting, and thus whether they are operational or retired. The times that they had been in orbit by the end of 1987 indicated that some, if not all, should have been due for replacement. No more Rhyolite launches could have been expected, so any replacements would have to come as part of another programme. The most likely choice for this was a programme with the code name Chalet, details of which are only now beginning to emerge.

The origins of Chalet are obscure, but appear to be related to an earlier programme known as Argus. In June 1975 a Titan 3C rocket placed a satellite in synchronous orbit, and observers immediately labelled it a SEP early warning satellite. It is now clear that this was the prototype Argus satellite, whose job was to eaves-drop on microwave transmissions, particularly long-distance telephone calls. At about the same time a battle was being fought behind closed doors in Washington for funds to start the full operational Argus programme. The outcome of the battle was that funds were refused, as they were on two subsequent occasions. What happened next is not certain, but the most likely explanation is that plans for Argus were revised or modified in some way, and given the new name Chalet. In this form they finally found approval, and the programme went ahead. 1

One thing, however, is certain; a second launch was made in June 1978, to be followed by a third the next year and a fourth in 1981.

Not much is the way of orbital data has been published for the Argus/Chalet satellites, and there have been no reports of their orbital stations. A reasonable guess, given their mission, would be in similar slots to those of the Rhyolites. The flights to date are summarized below:

Argus/Chalet Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argus</td>
<td>90</td>
</tr>
<tr>
<td>34A</td>
<td>55</td>
</tr>
<tr>
<td>30A</td>
<td>39</td>
</tr>
<tr>
<td>30B</td>
<td>14</td>
</tr>
</tbody>
</table>

There is no way, of course, of telling which of these satellites are operational and which have been retired, but their ages at the end of 1987 suggested that a launch in 1963 might have been required. Four launches had used Titan 3C, so any launch in 1983 would have to use a Titan 3C.

As noted earlier, there was a good chance of a Titan 3C launch to synchronous orbit in 1983, for whichever of Chalet or SEP had the greater need.
Ocean Surveillance

The big expansion of the Soviet Navy in the mid 1960s led the U.S. Navy to consider using satellites to keep track on the movements of ships at sea. Formal studies started in 1968, and a mission to test the techniques involved was flown in July 1971. Also during 1971 the USAF started using data from USAF photo reconnaissance satellites, but in 1973 the whole effort underwent a major re-direction. Two projects emerged, code named White Cloud and Clipper Bow.

White Cloud was to be the technically simpler project, using passive radio to listen in to transmissions from target ships. Each satellite was to deploy a set of small subsatellites, and each of these would be equipped with its own radio receivers. By measuring the small differences in the arrival times of signals at the various subsatellites, the locations of the transmitting ships could be deduced. Clipper Bow was to employ the more complex technique of active radar to locate ships, in much the same way as NASA's SERTM did in 1978. In the interim, while the projects were being developed, the burden of ocean surveillance would be carried by aircraft, principally the E-3.

The first White Cloud was launched on 10 April 1976, and in the weeks that followed three subsatellites were released. A second launch in December 1977 created a similar cluster in an orbital plane 120° away from the first, and a third launch in March 1980 completed the set.

The programme then faced a serious setback: a launch into an orbital plane very close to that of the first cluster failed when its booster veered off course in December 1980. This was the second mishap involving an Atlas F in little over six months, so a detailed investigation of the status of the vehicle was called, but it seemed certain that a replacement launch would be made as soon as this was completed. In the event, no launch came, although other Atlas F launches were resumed, and by the end of 1987 it was beginning to look as if White Cloud had been abandoned.

The orbits used by the White Clouds are high altitude ones, where the effects of atmospheric drag are negligible, and the spacecraft do not make any obvious manoeuvres. In addition, it appears that the distances between the subsatellites in a cluster are controlled by then being physically connected to each other with fine wires. Therefore, there is no means of telling whether a particular satellite cluster is active from its orbital data alone. Furthermore, there has been no indication whether the fourth launch was to replace a failing cluster, or to provide an in-orbit spare. Therefore, orbital data for all three clusters is listed below.

White Cloud Satellites at 11 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Perigee</th>
<th>Apogee</th>
<th>Inclination</th>
<th>Period</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976-58A</td>
<td>951km</td>
<td>1264km</td>
<td>63.6°</td>
<td>107.4m</td>
<td>80</td>
</tr>
<tr>
<td>G</td>
<td>946km</td>
<td>1269km</td>
<td>63.6°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>949km</td>
<td>1271km</td>
<td>63.6°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>953km</td>
<td>1265km</td>
<td>63.6°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>1977-117A</td>
<td>1030km</td>
<td>1177km</td>
<td>63.4°</td>
<td>107.4m</td>
<td>62</td>
</tr>
<tr>
<td>D</td>
<td>1035km</td>
<td>1182km</td>
<td>63.4°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1035km</td>
<td>1182km</td>
<td>63.4°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1037km</td>
<td>1182km</td>
<td>63.4°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>1980-19A</td>
<td>1068km</td>
<td>1217km</td>
<td>63.5°</td>
<td>107.4m</td>
<td>34</td>
</tr>
<tr>
<td>G</td>
<td>1076km</td>
<td>1149km</td>
<td>63.5°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1076km</td>
<td>1149km</td>
<td>63.5°</td>
<td>107.4m</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1087km</td>
<td>1195km</td>
<td>63.5°</td>
<td>107.4m</td>
<td></td>
</tr>
</tbody>
</table>

Whether any White Cloud launches could be expected in 1983 depended, of course, on whether the program was still active or not. If it was, then at least one launch, to carry out the mission of the IGS failure, could be expected. If it had been abandoned, then presumably the USA would continue to use aircraft for ocean surveillance, supplemented by data from photo reconnaissance satellites.

Meanwhile, design work on Clipper Bow continued. It had been planned to make the first launch in 1983, but the DoD decided not to go ahead with full development in 1979, and the next year the project was finally cancelled. In its place was created the Integrated Tactical Surveillance System (ITSS), which is to be a much more ambitious programme, involving the Air Force, Army and Marines as well as the Navy. Continuing development of ITSS was approved in May 1982, but the first launch would be several years away.
2.5 Nuclear Explosion Detection

The original role of nuclear explosion detection satellites was to keep watch for any tests carried out in space, in contravention of the Nuclear Test Ban Treaty of 1963. Satellites were launched in pairs into circular orbits at altitudes of around 100,000 km in a programme named Vela. The first pair was launched in October 1963, and their payloads consisted of X-ray and gamma-ray detectors and neutron counters. The third pair of satellites, launched in July 1965, also carried ultra-violet sensors and visible light flash detectors called thamemeters, which enabled them to detect explosions in the Earth’s atmosphere as well as in space.

By all accounts the Vela satellites performed remarkably well, exceeding their intended lifetime and detection capabilities by a sizable margin. A second generation of larger spacecraft was introduced in 1967, and they carried instruments to detect the intense electromagnetic pulse produced by a nuclear explosion in addition to the standard Vela payload. The sixth and final pair of satellites was launched on 8 April 1970, and these were to be the last satellites wholly dedicated to detecting nuclear explosions. In future sensor packages for this would be flown “piggyback” on other station satellites.

The first class of satellite to carry such a package was the SEP early warning satellites. It has not been revealed at which point in the SEP programme this began, but early in 1974 the Secretary of the Air Force commented that “these warning satellites have the capability to detect nuclear explosions above the ground and ultimately will replace current satellites which monitor the atmospheric test ban treaty.”

A year after this statement work started on a more sophisticated programme of nuclear explosion detection packages with the title Integrated Operational Nuclear Detection System (IONDS). These packages would be carried by Navstar satellites when they became operational, and would include spacecraft-to-spacecraft data links to enable residents from any part of the world to be viewed in real time. The mission of IONDS, however, will extend far beyond monitoring the Test Ban Treaty; its primary function is to detect and locate nuclear explosions in time of war, to provide attack and damage assessments during a protracted conflict.

A prototype IONDS package was flown on the ninth Navstar in April 1980, and operational versions are to enter service with the eighth launch.

2.6 Weather Observation

Military interest in the data from weather satellites goes back to the earliest experimental flights carried out by NASA, but as time went on the requirements of the civilian and military users diverged, and separate programmes were set up. The main aim of the civilian meteorologists was to gather weather data over the whole globe, so that the overall processes that influence the weather could be understood, and better forecasts produced. The military, in contrast, were interested in detailed views of selected areas, and they also wanted to be able to examine the data in as near real time as possible. Their need for this information were two-fold: firstly, to assist in the selection of targets for photo reconnaissance satellites, to ensure that they did not waste precious film on targets which were covered by clouds, and secondly, to support fleet and battle commanders in their daily operational planning.

The first military weather satellite was launched on 19 January 1965, but it was only in 1973 that the DoD officially acknowledged the existence of the programme, which became known as the Defense Meteorological Satellite Program (DMSP). Launches continued at the rate of about two per year, with periodic improvements when new versions or “blooms” were introduced. The complete DMSP system consists of two satellites in moderate altitude.
In recent years, however, the program has been dogged by launch and equipment failures, and for a period of about two years it was virtually impossible, leaving the DoD to rely on data from civilian weather satellites. This situation was partially rectified by the launch of the first of a new generation of DMSP satellites, referred to as Block 5D-2, on 21 December 1982, and a launch in 1983 to provide the second of the pair required by the full system started at that time to be a strong possibility. The one working satellite was crossing the Equator at about 06:15 local time, suggesting that if there was a launch in 1983, it would be a "moon satellite". The orbital data of the one working satellite at the end of 1982 is given below.

DMSP Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Perigee</th>
<th>Apogee</th>
<th>Inclination</th>
<th>Period Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>5D-2/21B</td>
<td>811km</td>
<td>8293km</td>
<td>96.7°</td>
<td>101.2min</td>
</tr>
</tbody>
</table>

9.7 Communications

The DoD and U.S. military services have such a large and wide ranging requirement for satellite communications that there are now three separate programs for this in operation, known as DMSP, PERSPECTIVE, and APOLLO.

The mission of the Defense Satellite Communications System (DMSP) is to carry high volume, high data rate traffic between large, fixed ground terminals. An example of this is the large number of routine messages that pass daily between the headquarters of the U.S. forces in Europe and installations in the continental USA. The first phase of DMSP was originally referred to as the Initial Defense Communications Satellite Program, and it consisted of a master, eventually 26, of small satellites in sub-synchronous orbits. In June 1966 an initial batch of seven satellites was launched on a single booster, and the system was declared fully operational in July 1967.

The second phase, known as DMSP II, depends on larger satellites in true synchronous orbits, with a full complement comprising four prime and two back-up spacecraft. The spacecraft were launched in pairs aboard Titan III rockets, of which the first were orbited on 3 November 1971. The launch failure and a series of equipment problems delayed the achievement of the full set of six operational satellites, however, until the flight of the seventh pair, in November 1975. Figure 3 shows the areas covered by the four prime satellites.

Meanwhile, work on the third phase was gaining momentum. Initiated in 1974, DMSP III was to field still larger spacecraft, with improved survivability, resistance to jamming, and greater flexibility of use. The first DMSP III satellite was launched with the thirteenth DSCS II on the Titan 34D flight of 30 October 1985. At the end of the year DSCS III-1 was in the midst of a period of extensive checkout before being handed over to its user, the Defense Communications Agency, while DCS II-15 was being moved eastwards at the rate of just under a degree per day to its operational station. In 1982 closed, the orbital data for the DSCS satellites in use was as follows:

DSCS Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Name</th>
<th>Satellite</th>
<th>Perigee</th>
<th>Apogee</th>
<th>Inclination</th>
<th>Period</th>
<th>Station</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime</td>
<td>DSCS II-4</td>
<td>35,799km</td>
<td>35,799km</td>
<td>4.6°</td>
<td>1416.6min</td>
<td>60°B</td>
<td>10</td>
</tr>
<tr>
<td>DSCS II-5</td>
<td>35,799km</td>
<td>35,799km</td>
<td>4.6°</td>
<td>1416.6min</td>
<td>75°E</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>DSCS II-11</td>
<td>35,799km</td>
<td>35,799km</td>
<td>1.1°</td>
<td>1416.6min</td>
<td>130°E</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>DSCS II-14</td>
<td>35,799km</td>
<td>35,799km</td>
<td>0.4°</td>
<td>1416.6min</td>
<td>13°E</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Back-up</td>
<td>DSCS II-12</td>
<td>35,741km</td>
<td>35,833km</td>
<td>3.4°</td>
<td>1416.6min</td>
<td>66°E</td>
<td>40</td>
</tr>
<tr>
<td>DSCS II-13</td>
<td>35,777km</td>
<td>35,712km</td>
<td>0.9°</td>
<td>1416.6min</td>
<td>130°E</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Being Replied</td>
<td>DSCS II-15</td>
<td>35,464km</td>
<td>35,779km</td>
<td>2.6°</td>
<td>1416.6min</td>
<td>34°W</td>
<td>2</td>
</tr>
<tr>
<td>DSCS III-1</td>
<td>35,272km</td>
<td>35,057km</td>
<td>2.4°</td>
<td>1416.6min</td>
<td>127°W</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

The DSCS II spacecraft have a design life of five years, and as can be seen from the table above one of the prime satellites had been in orbit for nearly double that figure, and another had exceeded it by eight months. One would therefore have expected a launch in 1983, and indeed reports in the press indicated that the second DSCS III would be launched with the sixteenth (and last) DSCS II on a Titan 34D in the latter part of the year.
The function of the Fleet Satellite Communications System (FLEETCOM) is to relay moderate volume, moderate data-rate messages between mobile users, and as its name implies, this is mainly for ship-to-ship and ship-to-shore communications for the U.S. Navy. The contract for developing the FLEETCOM spacecraft was awarded in 1977, and the first was launched on 9 February 1978. The initial part of the program consisted of placing five spacecraft in synchronous orbit, four as primes and one as an in-orbit spare. The first four launches went without a hitch, but the fifth satellite, the spare, was damaged during separation from its booster, and it is only able to provide limited communication facilities. The coverage achieved by the four prime spacecraft is illustrated in Figure 4, and data for all five satellites is listed below.

FLEETCOM Satellites at 21 December 1982

<table>
<thead>
<tr>
<th>Name</th>
<th>Satellite</th>
<th>Prime</th>
<th>Spacecraft</th>
<th>Incl</th>
<th>Period</th>
<th>Station</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEETCOM 1</td>
<td>3175-16A</td>
<td>35,760m</td>
<td>35,600m</td>
<td>1.5</td>
<td>1436.2min</td>
<td>100°W</td>
<td>59</td>
</tr>
<tr>
<td>FLEETCOM 2</td>
<td>3177-26A</td>
<td>35,722m</td>
<td>35,620m</td>
<td>0.3</td>
<td>1436.2min</td>
<td>72°E</td>
<td>44</td>
</tr>
<tr>
<td>FLEETCOM 3</td>
<td>3190-024A</td>
<td>35,724m</td>
<td>35,620m</td>
<td>1.5</td>
<td>1436.2min</td>
<td>25°W</td>
<td>35</td>
</tr>
<tr>
<td>FLEETCOM 4</td>
<td>3190-17A</td>
<td>35,765m</td>
<td>35,607m</td>
<td>0.7</td>
<td>1436.1min</td>
<td>172°E</td>
<td>26</td>
</tr>
<tr>
<td>Back-Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEETCOM 5</td>
<td>3161-7SA</td>
<td>35,659m</td>
<td>35,915m</td>
<td>3.5</td>
<td>1436.3min</td>
<td>45°W</td>
<td>17</td>
</tr>
</tbody>
</table>

Like the BRIS II satellites, the FLEETCOM craft have a design life of five years, and it will be noted from the tables above that the first was to exceed this in 1983, and the second was to be not far short of it at the end of the year. However, in 1977 Congress ruled that there should be no follow-on spacecraft after the fifth, but that in future the DoD should lease channels from commercially-owned satellites. A program called LERAN, to fulfill the role of FLEETCOM, in under way, but the first launch is not expected until 1984. In 1981 Congress reversed its decision, allowing a contract to be awarded for three more FLEETCOM spacecraft, in addition to LERAN, but the first of these will not be launched until 1985. Therefore, no launch activity associated with this program could have been expected for 1983.

The third program in the Air Force Satellite Communications System (AFSATCOM), whose function is, to provide command and control of strategic nuclear forces, with a particular emphasis on retaining its capabilities during times of war. The main feature of its communications traffic is that it should be secure and resistant to jamming; the actual message to be relayed are quite short and comparatively low data-rates can be used.

Unlike the other two communications satellite programs, AFSATCOM does not have its own satellites, but instead it uses channels on spacecraft from other programs. At the present time this is restricted to FLEETCOM and SIO spacecraft, but NSG III will be in the future carry some AFSATCOM transmissions. At one time it was also planned to equip operational Navstar satellites with a single channel transponder for AFSATCOM, but this was recently cancelled.

Twelve of the 23 channels available on FLEETCOM spacecraft are used by AFSATCOM, and these provide worldwide coverage between latitudes 75°N and 75°S, as can be seen from Figure 4. For the majority of communications satellite users this would be more than adequate, but for AFSATCOM the lack of coverage over the North Pole would present a serious problem. Should there be a major war, U.S. bombers would fly over the North Pole on their way to attack the Soviet Union, and communications between them and the command post in the United States during this would be absolutely vital. It is to provide this trans-polar relay that AFSATCOM uses spacecraft of the Satellite Data System (SDS).

The SDS is one of the most highly classified of all U.S. military space projects, and it is possible to piece together a reasonably complete picture of it. Satellites in this program use orbits similar to the Soviet Molniyas, with perigees of about 4000 km and apogees of about 30000 km. This gives a period of just under 12 hours, and combined with an inclination of 63.4°, causes the groundtrack to be stabilised in relation to the Earth's surface. An wedge is positioned at the northernmost part of the groundtrack, so that the satellites is able to relay communications over the Pole for about eight hours each orbit. Three suitable space satellites can thus provide 24 hours a day coverage.

SDS spacecraft have other functions besides trans-polar relay for AFSATCOM. It was originally planned that they would act as a direct link between photo reconnaissance and early warning satellites while they were over the Soviet Union and their controllers in the United States, but this was abandoned for unspecified reasons in 1977. Instead, they are used to handle communications between the overseas ground stations and the Satellite Test Center in Sunbury, California, which together make up the SDS's Satellite Control Facility. More recently, however, it has been claimed that the SDS spacecraft can act as a direct relay for the E-11 satellite, due to the latter's entirely digital image format. It is also possible
that SSN spacecraft perform SL Bowen activities, monitoring foreign radar transmissions.

The first satellites launched in the SSN programmes were two experimental vehicles, which were placed in orbit in March 1971 and August 1973. The first operational satellite was launched on 10 March 1974, and the initial network appears to have been completed by the second and third spacecraft, which were launched two months apart in mid-1976. Two were launched in 1975, and then there was a gap of over two years before the sixth, in December 1980. The most recent launch, the seventh, came on 24 April 1983.

Needless to say, none of these satellites is ever listed in the Two Line Orbital Elements or the Satellite Situation Report, so there is no way of knowing which ones are still in use. Only the last four launches were made within the five years to the end of 1982, so in the absence of any other indicator they will be considered as the operational ones at that time (three prime and one back-up); their data is listed below.

SSN Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978-21A</td>
<td>58</td>
</tr>
<tr>
<td>1978-75A</td>
<td>53</td>
</tr>
<tr>
<td>1980-100A</td>
<td>75</td>
</tr>
<tr>
<td>1981-29A</td>
<td>20</td>
</tr>
</tbody>
</table>

If a design life of five years is assumed, then a launch in 1983 seemed to be a strong possibility at the end of 1982, given the ages of two of the satellites, and the critical need to keep a full system in operation.

Navigation Satellites

When the first artificial satellite was launched in October 1957, two scientists at the Johns Hopkins University's Applied Physics Laboratory noticed that the signals received from it exhibited a varied Doppler shift as the satellite approached, passed overhead, and then receded. If the orbit of the satellite and its transmission frequency were known, they argued, then the receiver's position could be determined by measuring the Doppler shift. At just this time the U.S. Navy was looking for a way of improving the navigation and position-fixing capabilities of its nuclear submarines, and here seemed to be the answer. Thus the Navy Navigation Satellite System, more commonly known as Transit, was born.

Development of Transit began in December 1958, and the first satellite was launched two months later. The system was declared operational in January 1964, and released for use by the civilian community in 1967.

Although the operation of a position fix requires only one satellite, the system as a whole requires a minimum of four satellites to be operating, so that the times at which no satellite is in view, and thus no fix can be made, are kept to a minimum. At the end of 1982 there were five functioning Transits in orbit, plus the first of an improved version called Nova. The orbital data for these satellites is given below.

Transit and Nova Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Name</th>
<th>Satellite</th>
<th>Perigee</th>
<th>Apogee</th>
<th>Inclination</th>
<th>Period in Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit 0-12</td>
<td>1967-34A</td>
<td>10400km</td>
<td>10700km</td>
<td>90.3°</td>
<td>106.344</td>
</tr>
<tr>
<td>Transit 0-13</td>
<td>1967-45A</td>
<td>10612km</td>
<td>10946km</td>
<td>89.7°</td>
<td>106.543</td>
</tr>
<tr>
<td>Transit 0-14</td>
<td>1967-92A</td>
<td>10324km</td>
<td>11056km</td>
<td>89.5°</td>
<td>106.643</td>
</tr>
<tr>
<td>Transit 0-19</td>
<td>1970-67A</td>
<td>9685km</td>
<td>11205km</td>
<td>90.3°</td>
<td>106.643</td>
</tr>
<tr>
<td>Transit 0-20</td>
<td>1973-81A</td>
<td>8895km</td>
<td>11346km</td>
<td>90.0°</td>
<td>105.642</td>
</tr>
<tr>
<td>Nova 1</td>
<td>1961-446</td>
<td>11675km</td>
<td>11839km</td>
<td>90.0°</td>
<td>109.042</td>
</tr>
</tbody>
</table>

In addition to the spacecraft in orbit, there are 12 Transits and two Novas in storage, to be launched should any of those in orbit fail, or gaps appear in their coverage. The latter situation could arise in the following way: the launcher used for this programme is the Nova, and the positioning control of its final stage is not particularly precise. As a result, the orbits achieved vary significantly from one launch to the next, and consequently so do the rates of orbital precession. These differing rates can mean that the planes of two satellites' orbits drift apart, giving rise to an unacceptable large gap in coverage.

Figure 5 shows the positions of the orbital planes at the end of 1982, and it should be compared to the ideal arrangement of four satellites whose planes are separated by 45°. There are two ways greater than 45°, and while the precessions were causing the large one to decrease, the smaller one was increasing. Therefore, a launch in 1983 seemed a moderate possibility.
It should be noted here that NASA, which carries out the actual launches for the Navy, included in its announced schedule for 1963 two such missions. These were, however, only call-up missions, to be made if required, rather than definite launch intentions. Indeed, each NASA launch schedule for the last several years has included one or two such entries.

In 1964 both the Navy and the Air Force started studying ways of providing more accurate fixes than Transit, and ones which would compute altitude as well as latitude and longitude. These efforts were combined in 1973 into an all-service programme entitled the Global Positioning System, now more usually known as Navstar. The principle of Navstar is to use four satellites simultaneously to achieve a three-dimensional fix without requiring the user to have an accurate measurement of time. In this way, small, low cost receivers could be produced, making the system attractive to a wide range of potential users.

The orbit eventually chosen for Navstar was circular with a period of just under 12 hours, and by using an inclination of 63.4° the ground would be stabilized on the Earth's surface. Originally the full system was to consist of 24 satellites, eight in each of three orbital planes. In spring 1980 this was reduced to 18 satellites, six in each plane, as a means of cutting costs and subsequently this was increased to three satellites in each of six orbital planes, plus three in-orbit spares.

The first phase of the programme was a long series of tests of the concept, and the initial batch of four Navstar satellites was launched in 1978. The first two of these suffered a series of failures in their on-board clocks, and although they could still be used for some types of testing, Navstars 5 and 6 were launched as replacements in 1980. A seventh launch failed shortly after lift-off in December 1981, and the last data for the six satellites in use at the end of 1982 was as follows.

Navstar Satellites at 31 December 1982

<table>
<thead>
<tr>
<th>Name</th>
<th>Satellite</th>
<th>Perigee</th>
<th>Apogee</th>
<th>Inclination</th>
<th>Period Months in Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navstar 1</td>
<td>1978-03A</td>
<td>20,095km</td>
<td>20,605km</td>
<td>63.4°</td>
<td>T/Iain 58</td>
</tr>
<tr>
<td>Navstar 2</td>
<td>1979-03A</td>
<td>20,095km</td>
<td>20,413km</td>
<td>63.0°</td>
<td>T/Iain 56</td>
</tr>
<tr>
<td>Navstar 3</td>
<td>1979-03A</td>
<td>20,195km</td>
<td>20,214km</td>
<td>63.6°</td>
<td>T/Iain 53</td>
</tr>
<tr>
<td>Navstar 4</td>
<td>1978-11A</td>
<td>20,095km</td>
<td>20,572km</td>
<td>63.2°</td>
<td>T/Iain 49</td>
</tr>
<tr>
<td>Navstar 5</td>
<td>1980-11A</td>
<td>20,095km</td>
<td>20,793km</td>
<td>63.8°</td>
<td>T/Iain 55</td>
</tr>
<tr>
<td>Navstar 6</td>
<td>1980-12A</td>
<td>19,754km</td>
<td>20,409km</td>
<td>63.4°</td>
<td>T/Iain 39</td>
</tr>
</tbody>
</table>

In 1987 the DoD revealed that the eighth Navstar, carrying the first operational INMOS package, would be launched in mid 1989.

2.9 Research and Development

The research and development missions form a vital adjunct to the operational programmes described above. They cover a very wide range of topics, from investigations of the basic physical processes which influence the space environment, to evaluations of new technological concepts. Initially these missions were carried out by each service independently, but in May 1965 they were consolidated into the Space Test Program (STP), and nowadays most R&D missions come under its auspices.

The most recent mission whose spacecraft was still in orbit at the end of 1965 was PTJ-1, launched in February 1979. The experimental nature of most STP satellites tends to lead to much shorter operating lives than those of operational programme satellites, and therefore it did not seem likely that any R&D satellites were still functioning at the year's end.

The amount of information about an R&D mission that is made public beforehand varies considerably, and this was particularly true for missions that had been announced for 1983. Reference has been made to five flights, but the accompanying data ranged from the very fact that a launch was planned to a detailed mission description.

The first R&D satellite scheduled for 1983 was the U.S. Navy's Decent, which was to be launched by an Atlas F in March. The aim of the flight was to provide more precise data on the Earth's gravitational field, to enable the mathematical model to be used in the Trident 2 missile guidance system to be refined. No details of the intended orbit were released, but the fact that the launch was to come from Vandenberg suggested a near-polar orbit.

The second payload was again for the U.S. Navy, this time using a modified Titan II rocket launched by NASA on a Scout rocket. Known as E14A (for Esmond, for High Latitudes), it was to investigate the distortion produced in radio and radar waves as they pass through several planes in the Earth's polar region. This launch was planned for the summer of 1983.
The two Navy missions were to be followed by two missions for the Air Force, listed simply as AF1 and AF2, they were to be launched by NASA using Scout rockets from Wallops Island, in August and December; no other details were made public.

The final SAS flight of 1983, and by far the most publicized, was to be SS-28. This would be the first all-in-one Shuttle flight when it was launched in December, and it would carry a free-flying satellite designated FSO-1 plus an experiment-carrying module known as SIS-2. The FSO-1 satellite would be released from the Shuttle when it was in a 105km circular orbit, but this would then be raised to a 1200km circular orbit by a two-stage rocket attached to the satellite. The primary mission of FSO-1 would be to test the Teal Baby sensor, which is to demonstrate the detection of aircraft from space using a staring mosaic infra-red array. Also carried on the satellite would be two NASA ion thrusters, an extreme ultraviolet photometer, and a Navy stellarhorim atmospheric dispersion experiment. The Navy experiment replaced a laser communications experiment, which was deleted due to lack of funds in August 1983.

The two NASA ion thrusters were prototypes of devices that is hoped could be used on synchronous orbit satellites for station-keeping, their very low fuel consumption enabling the satellites to stay in station much longer than at present. For the first year of FSO-1's operation they would not be used, to avoid contaminating Teal Baby's optics, and this period would be mainly spent in testing Teal Baby. The ion thrusters would then be tested in a series of 5,557 firings in 507 days, for an overall mission duration of nearly three years.

The SIS-2 module, which would remain attached to the Shuttle throughout, would carry five experiments to carry out a range of measurements in the infra-red, ultra-violet, X-ray, gamma ray and plasma environments.

However, all was not well with Teal Baby; it had already suffered a series of delays, and by the end of 1982 it was becoming clear to project managers that it would not be ready for the planned flight. These problems would come to a head in the course of 1983.

3. THE EVENTS OF 1983

3.1 1983-05: Ocean Surveillance Revived

The first U.S. military space launch of 1983 came at approximately 13:45 GMT on 9 February, when an Atlas F was launched from Vandenberg AFB, receiving the international designation 1983-005. Its cargo entered a 106.6km by 118.4km, 63.4° orbit, and within the next four weeks seven objects were released from the main payload. This was very similar to the previous ocean surveillance flights; the first produced a total of 21 objects in orbit, while the second and third each produced eight objects.

The main payload, object A, appears to have manoeuvred six times in its first three weeks in orbit, but it is not absolutely certain whether these were true maneuvers or simply refinements in the orbital model used in the Two Line Orbital Element. Either way, no more orbital changes were apparent after the beginning of March, by which time its orbit was from 105km to 116km, with a period of 107.47 minutes.

At the time of the launch of 1983-05 all nine sub-satellites from the preceding ocean surveillance missions were in orbits with periods of 107.47 minutes (in fact, their periods all agreed to within one twentieth of a second), and it soon became clear that the sub-satellites from this mission were objects R, F and N, as they too had exactly this period. Like the main payload, all three sub-satellites were in 107.47km orbits. Subsequently, the identification of these objects as the sub-satellites was confirmed, with designations SSD, SSD, and SSD, but it was revealed that object 3 was also a payload, labelled SSD. Its orbit was from 106km to 118km, with a period of 107.39 minutes, implying that its operation was not connected directly with that of the other sub-satellites.

One would have imagined that 1983-05 would have been intended to carry out the mission of the December 1982 failure, but the position of its orbital plane leaves one doubt whether this was actually the case. It will be recalled that the three successful ocean surveillance clusters had orbital planes that were near or less evenly spaced, the actual gaps between the planes at the time of 1983-05's launch being 112°, 125° and 142°, and that if the failure had been successful, its plane would have been 5° to the west of 1976-30'a. When 1983-00 went into orbit, its plane was 9° to the east of 1976-30'a. One possible explanation
In October 1980 the Secretary of the Air Force stated that only four close look photo reconnaissance satellites remained in the inventory, and they would be used only in times of "serious military emergency." One of the four had been launched in 1981, and a second appeared as 1983-31A. Launched at about 19:45 GMT on 15 April, it entered an orbit of 135 km by 314 km at 96.5°E. Following the normal pattern for close look satellites, its orbit was non-synchronous with its observational passes in the southeast direction, crossing the equator at about 10:30 local time.

After a period of four days, when the satellite’s orbit had been allowed to decay without correction, 1983-31A began the daily cycle of decay followed by manoeuvre that typifies the close looks. Each cycle started with the satellite in a roughly 120-km by 200-km orbit, with its perigee lying at 55°N on the southbound pass. After about 24 hours atmospheric drag would have reduced the orbit to 120 km by 250 km, and perigee would have moved the perigee northwards to 90°N. At this point, which generally came at around 7 p.m. GMT, a two-hour manoeuvre would be made to reset the values, and a new cycle would begin. Averaged over several cycles, 1983-31A’s orbital period was 50.44 minutes and its true separation (i.e. the separation in longitude between successive equator crossings) was 29.12°, which meant that its groundtrack repeated every seven days, which took 114 orbits.

A report from Washington speculated that the mission of 1983-31A was to check on Soviet compliance with arms control agreements, reflecting the Reagan administration’s growing concern over the repeated claim of SALT treaty violations. The report also gave the first indication of the programme’s official, if classified name, which was 46-04.

For the last ten years satellites of the close look programme have displayed steadily increasing lifetimes, with each staying in orbit longer than its predecessor. 1983-31A carried on this tradition, operating for a total of 126 days before its de-orbit on 21 August.

3.3 Changes to the Two Line Orbital Elements

The Two Line Orbital Elements are a unique source of data for anyone wishing to make a detailed study of activities in space. They are issued daily by NASA, but originate at NORAD, as part of its function of monitoring objects in space. It has been NORAD’s practice in the past to include orbital elements for virtually all spacecraft which are transmitting or operational, whether foreign or American, with the exception of three classes of U.S. military satellites. These classes are the Rho/Cheta 6N7V satellites and the EELV communications satellites.

In the Two Line Orbital Elements for the 15 and 16 June the author discovered that there were no element sets for any photo reconnaissance or early warning satellites. This situation continued in subsequent issues, so the author contacted NORAD, only to be told that these sets had become "unavailable," and that they did not expect them to become available in the near future. Within a few weeks, ocean surveillance satellites had joined the list of prescribed classes.

The Two Lines are the only sources which provide full orbital details, and are the only source from which much things as orbital manoeuvres, asynchronous orbit stations, or orbital plane changes can be calculated. This change to NORAD’s policy on which elements it should release to the public represents a significant loss to observers of the U.S. military space programme.

3.4 1983-36 - The Second Continues

As if making up for lost time, a second ocean surveillance mission in 1983 came only four months after the first. 1983-36 lifted off at about 23:17 GMT on 9 June, and the first element set released showed it at rev 17 in a 106-km by 115-km, 63.3° orbit. Only four further element sets were released before NORAD’s change of policy came into effect, and these implied a manoeuvre to a 105-km by 110-km orbit, followed by one to a 106-km by 110-km orbit.
Like its predecessor, 1983-56A released seven objects into orbit, but only two of them were stated to be satellites; these were objects C and D, which were given the designations G21 and G22. No explanation of the meaning of the ocean surveillance sub-satellite designations has ever been given, and the mystery is compounded by the fact that each mission seems to use an entirely separate system. To date, the sub-satellite names have been as follows:

- 1976-35: 801-1, 801-2 and 801-3
- 1977-167: SS-1, SS-2 and SS-3
- 1980-19: TP-1, TP-2 and TP-3
- 1983-08: B14, B15, B16 and B17
- 1985-56: G21 and G22

Unfortunately, only one element set was released for each sub-satellite, and both of these showed a 160km by 177km orbit, with a period of 107.48 minutes, which is in good agreement with the periods of the sub-satellites from previous launches. The deployment of two sub-satellites rather than three was somewhat unexpected, and so was the positioning of 1983-50-a orbital plane. As can be seen from Figure 4, it was 35° to the west of 1977-113, or considered another way, 15° to the west of 1983-03. At this time it is not clear whether 1983-50 represents part of the already existing ocean surveillance system, or whether it is the start of a new, and to some degree different, system. This may well be resolved when another launch is made.

3.5 1983-60 - The Second Photo Reconnaissance Mission of 1983

The launch of 1983-60 on 20 June was largely unheralded in the world's press, but several points make it worthy of note. First of all, this was the inaugural flight of the West Coast version of the Titan 3F, taking over the role of launching large reconnaissance spacecraft from the Titan 3B. The Titan 3F’s capability to a low orbit is 1,260 tonnes, a substantial increase over the Titan 3B’s 1,100 tonnes. Although there was nothing to indicate that 1983-60 was anything other than a standard Big Bird, this increased capability would be used in 1984 to launch the first advanced SE-11 spacecraft, a design that is intended to satisfy photo reconnaissance needs virtually to the end of the century.

The second reason that 1983-60 was worthy of note was that it may well have been the last Big Bird; when the Secretary of the Air Force said that there were only four more close look craft left, he also said that there were enough Big Birds to last through 1983. With the June launch, 1983-60A could be expected to remain in orbit until the first week of 1984, and as follow-on missions missed unlikely. If 1983-60A was, in fact, the last Big Bird, then the programme would have achieved a notable record; 20 flights in 13 years, every one a success, and running between 6.7 years of observation time.

A further point of note is that between the launch of 1983-60A on 20 June and the 22-orbit of 1983-324 on 21 August, the United States had four photo reconnaissance spacecraft operating in orbit, with each class and each type of coverage represented.

Just one element set was released for 1983-60, and this shows the satellite in a 160km by 25,690km orbit at 210°. The launch was made at about 10:45 GMT, so the northbound pass crossed the Equator at about 16:30 local time. If 1983-60A followed the standard form for Big Birds, it would have entered a regular three day cycle a few days after launch. The cycle would start with the spacecraft in a 160km by 25,690km orbit, with the perigee at 47°N on the northbound pass, but after three days atmospheric drag and precession would have reduced this to a 161km by 24,690km orbit, with its perigee at 39°N. A two-hour manoeuvre would then restore the values, and the cycle would be repeated.

The Big Bird spacecraft, object A, was accompanied into orbit by the upper stage of the Titan vehicle core, which existed as object B for just under two days before it decayed. An EBLT sub-satellite, object C, was deployed from the main satellite, but no element sets were released for it. However, the KB Table of Earth Satellites listed it as being in a 109km by 151,414km orbit.

3.6 1983-64A - EBLT

The EBLT surveillance research satellite, described in section 2.3, was launched on 27 June. Its Scout booster rocket placed it in an orbit from 77,100km to 83,700km, inclined at 83.9° and with a period of 121.02 minutes. Correct operation of the on-board experiments was reported soon afterwards, and later in the year the EBL released some imagery.
3.7 1963-TM4 - Navestar 8

Navestar 8 was launched on 14 July by an Atlas F-SVV booster combination from Vandenberg AFB, as was still the early hours of the morning there. After separation from the SIV upper stage, Navestar 8 was in a 540km by 29,976km, 53.00° orbit, with a period of 371.39 minutes. A day and a half later, as it was just starting its seventh orbit, the satellite's built-in engine motor fired to raise its orbit to 19,930km by 29,798km, 62.0°, giving it a period of 725.81 minutes.

It will be noticed that Navestar 8's orbital period in its new, circular orbit was somewhat greater than the figure of 715.0 minutes required for a stabilized orbit, but this was quite intentional. Navestar satellites use a technique similar to synchronous orbit satellites for attaining their required orbital positions. By taking up an orbit which has a period slightly different from 715.0 minutes, the groundtrack can be made to drift eastwards or westwards at a slow, controlled rate until the desired position is reached, at which point the orbit is adjusted to have a period of 715.0 minutes, thus stopping the drift and stabilizing the groundtrack. In Navestar 8's case, its groundtrack was moving westwards at a rate of just under 6° of longitude a day. During rev 16, on 28 July, Navestar 8 reached its required position, and so its orbit was lowered to 19,930km by 20,463km, thus reducing its period to 717.99 minutes.

The position at which Navestar 8's orbit was stabilized coincided with those of Navestars 1, 4 and 5, and it was then ready to take up its position fixing role.

3.8 1963-TMA - The Mystery Satellite

Of all the launches in 1963, of any nationality, 1963-TMA must surely win the prize as the one for which the least amount of information was made available. The sum total of data available in that the launch took place at Vandenberg AFB on 31 July, using a Titan 3C launch vehicle, and that two objects appeared in orbit, both of which were still there at the end of 1963. No orbital data of any kind has been released.

This data, meagre though it may be, is sufficient, however, to deduce 1963-TMA's mission with a high degree of confidence. Prior to this launch, the Titan 33 booster had been used successfully on 79 occasions, but for only three types of mission. Close look photo reconnaissance launches accounted for 49 out of the total, DDS communications satellites for nine, and there was one unique mission in the previous year, 1962-04. If the launch of 1963-TMA had taken place before NRO12 changed its release policy, the lack of orbital data would have immediately indicated an DDS mission, as full element sets were always released for close look and the 1962-04 missions, but now more subtle clues would have to be found.

There are two reasons for believing that 1963-TMA was not a close look satellite. Firstly, in all the 21 years of close look operations there has never been a single instance of two satellites being in orbit at the same time, and yet at the time of 1963-TMA's launch 1963-12A, which was known for certain to be a close look, was still in operation, and would remain so for another three weeks. Secondly, only a small number of close look launches have ever produced more than one object in orbit, and in the few cases that have, the secondary objects have always decayed within a few days of release from the main satellite. Clearly, 1963-TMA did not fit this pattern.

Neither did 1963-TMA fit the profile of 1962-06. When 1962-06 was launched, two objects appeared in orbit, but object 2 decayed within a matter of hours. Two months after launch three objects were released from object 1, followed by a fourth six weeks later. Object 1 was re-orbited after four months in orbit.

1963-TMA does, however, fit the DDS profile very closely. In each DDS launch, two objects have appeared in orbit at the start of the mission, both of which were long-lived, a pattern exactly repeated by 1963-TMA. It seems, therefore, almost certain that the 1963-TMA was the eighth DDS satellite, and it will be recalled that in section 3.7 it was concluded that an 8th DDS launch in 1963 was a strong possibility.

3.9 1963-11A - INF Returns to Normal Service

Almost eleven months after 1963-11A had brought the INF programme back into operation, albeit at a reduced level, 1963-11A was launched to
restores the full two-satellite service. 1983-113A was launched at about 06:13 GMT on 18 November, and went into an orbit ranging from 815km to 639km, with an inclination of 96.7° and a period of 101.4 minutes.

There was one factor, however, relating to 1983-113A's orbit that was peculiar, and that was the local time of its Sunpass crossings. All the standard descriptions of the DASQ system state that one satellite makes its northbound crossings at about 06:30 local time, and the other at noon. When 1983-113A was launched, 1982-110A was making its crossings at 06:17, but the new satellite made its at 10:10. Examination of earlier launches shows that this has, in fact, occurred before; the first Block 3A satellite, 1976-01A, made its crossings at 10:10 local time, while 1978-01A made its southbound crossings at 09:54. Presumably, the crossing time of the second satellite in the system has been brought forward to allow more time for analysis of its data before distribution, or to improve lighting conditions at the target sites.

3.10 DASQ Problems on 1987-4

Although the mission of 1987-4, to launch the SES-4 satellite, was entirely civilian in nature, it was to have important consequences for more than one U.S. military space programme. This was to be the first time that the Inertial Upper Stage (IUS) was flown on the Shuttle, and in the future several military programmes planned to make use of the IUS. There had been only one flight involving an IUS before 1987-4, and that was on the Titan 34D flight of October 1982, when the stage had performed flawlessly.

It was during the firing of the IUS upper stage on 3 April that disaster struck; 80 seconds into the 105-second burn all contact with the vehicle was lost. In the next few hours flight controllers managed to separate the SES-4 spacecraft from the IUS, but it was left in a 21,055km by 25,398km orbit instead of the planned synchronous orbit.

While NASA concentrated on judging SES-4 up into its proper orbit, the NSF, who had responsibility for the IUS vehicle, set up a Joint Accidental Investigation Board to determine the cause of the failure. As all telemetry had been lost at the instant of failure, the board had little information to work on, and finding the fault was to take some months. Understandably, NASA was reluctant to fly any more IUS missions until the anomaly had been cleared, and by the end of April it looked most unlikely that TMS-3 would be flown on SES-4, scheduled for August. In mid May it was reported that NASA was considering a test mission for the IUS, with a dummy payload, and TMS-10 was suggested as one of the possible candidates. The reference to TMS-10 implied that its previously stated role of carrying the 1984-1 satellite (see section 2.9) had been dropped, and this was confirmed in two separate reports a month later. In one, it was stated that the Teal belly sensor, which was to form the major part of TMS-1, had been experiencing development problems for some time, and its launch had been postponed until 1986. In the other, it was stated that TMS-10, which was described as carrying a large national security satellite" to be placed in synchronous orbit by an IUS, had been cancelled, due to uncertainties with the IUS. Although there has been no public confirmation, one must assume that the one or two Titan 34D flights that were to use the IUS in 1983 were also cancelled at this time, and indeed no such launches had been made by the year's end.

By the end of September the fault in the IUS had been narrowed to a breakdown in thermal insulation allowing a doughnut-shaped seal to overheat and burst. In anticipation of a cure being found, NASA's Shuttle schedule for 1984, published on 16 November 1983, included three missions involving IUS stages. These were 41-D for the DoD in July, 41-E for the DoD in September, and 51-C, carrying TMS-3, in December.

3.11 Satellites Which Were Already in Use at the Start of 1983

Section 2 described the 60 or so satellites that were in operational use at the start of the year, and all of these were still in orbit at the end of 1983. Several of these satellites regularly manoeuvre, either to counter orbital decay or to keep on station, but unfortunately orbital data for some of them is not made public. With the change to NASA's policy of which satellites to include in the Five Lines Orbital Elements that occurred in June, the number of satellites for which data was not available grew.

Prior to the change in the Five Lines the two MIM-11 satellites made size manoeuvres between them, and the fact that they were still in orbit at the end of the year showed that they were still operational. Similarly, the IUS satellites had made a total of five station-keeping manoeuvres.
by June, and the Satellite Situation Report for 31 December 1963 showed
them all as having periods of 1436 minutes, indicating that they were
still station-keeping, and thus operational, although they might, of course,
have moved stations in the intervening period.

One group of synchronous orbit satellites for which full orbital data is available
is the DECS communications satellites, and it shows that they performed an
impressive sequence of manoeuvres during the year. In 1963 began the four
prime satellites were numbers II-4 (stationed at 60°W), II-6 (135°E),
II-11 (135°W), and II-14 (135°W). The first event came on 21 January when
II-15, which had been drifting eastwards since its launch the previous
October, arrived at 15°E and manoeuvred to stop its drift and take up
that station, backing-up II-14. Launched with II-15 had been II-1, and
it was drifting towards the 130°W station, but at a much lower rate. This
particular slot was already occupied by satellite number II-3, so it was
manoeuvred on 30 February to send it drifting westwards at almost 1°
of longitude per day. DECS II-2 was stabilised at 130°W in late February,
while II-13 continued until it reached 100°W on 3 April, when it was
halted.

The extensive switching out of II-3 was completed on 30 April, when it was
formally handed over to its user, the Defense Communications Agency.
Within a fortnight it had swapped positions with II-11, so that it was
now the prime satellite at 135°W, and II-11 was the back-up at 130°W. In
mid July a second swap took place, between II-3 and II-15, resulting in
II-13 being the prime at 175°E, backed-up by II-6 at 180°E. One wonders
whether the second swap over resulted from the cancellation of the planned
launch of DECS II-16 and III-9, or whether this launch, had it been made,
would have triggered yet more changes of station.

In contrast to the DECS satellites, the QM-STAR satellites maintained
their synchronous orbit stations without change throughout the year.
The only other satellite whose status was clear at the end of 1963 were
the two navigational satellite programmes, Transit and Navstar. The fact
that the U.S. Navy did not take up the option of either of the Transit
call-up launches implies that no replacement spacecraft was needed, and
that all the spacecraft in orbit at the start of 1963 remained usable
throughout the year. Also at the end of 1963, all seven Navstar were
still in orbit with periods of 705.5 minutes, and their plane specimens
had been maintained, implying that they too were all operational.

By the end of 1964, we found that the Department of Defense had
practically completed a review of all its communications programmes,
designed to ensure that all planned satellite launches would be
completed before too much time had been spent on projects that were
no longer viable. The result was that we had six satellite launches
planned for the year 1965, five of which were to be conducted for
the Department of Defense, and one for the Department of
Transportation. The five DOD launches included two communications
satlites, one meteorological satellite, and two weather satellites.

Of the total of 30 satellites in orbit at the end of 1963, 20 were
in synchronous orbit, and 10 were in low Earth orbit. Of these 20
synchronous orbit satellites, 13 were communications satellites, and
7 were meteorological satellites. Of the 10 low Earth orbit satellites, 5
were communications satellites, and 5 were meteorological satellites.

In conclusion, the year 1964 was a year of steady progress, full of interest for
the observer and analyser.
Fig. 1: DSP Satellite Coverage

Fig. 2: Rhyolite Satellite Coverage
REFERENCES

The orbital data quoted in Section 3 was taken from the 31 December 1982
issue of NASA’s Satellite Situation Report, which provides data as of
24:00 GMT on that date. The data used in Section 3 was derived from
NASA’s Two Line Orbital Elements. In both sections the NASA’s Table of
Earth Satellites was a useful cross-check.

1. A. Bendy, “U.S. Reconnaissance Satellite Programms”, Spaceflight,
July 1978.

2. A. Bendy, “Recent Developments in U.S. Reconnaissance Satellite
Programmes”, FAS, January 1978.

Chapter 5.

Chapter 16.

16. Demonstration and Space Report of the President’s 1980 Activities

21. Demonstration and Space Report of the President, 1979 Activities

22. P.G. McCullough, “DISC: An Evolving Operational System”, Signal,
February 1981.

27. Aviation Week and Space Technology, 7 June 1981.

28. “Nuclear Hardened, Autonomous Satellite Readied for Launch”,
Defence Electronics, September 1981.

33. C. Richards, “Naoa–A Complete Navigation System”, Spaceflight,
January 1980.

34. Aviation Week and Space Technology, 14 April 1980.

41. Aviation Week and Space Technology, 26 December 1983.

42. Aviation Week and Space Technology, 9 August 1982.

43. Aviation Week and Space Technology, 26 October 1981.

47. Aviation Week and Space Technology, 26 September 1983.

System; Another Milestone”, Signal, September 1983.
Fig. 3: DECS Satellite Coverage

Fig. 4: FLYTRATCOM Satellite Coverage
Orbits of the Transit and Nova Satellites on 31 December 1962, viewed from above the North Pole.

Fig. 6: Relative Plane Spacing of the Ocean Surveillance Satellites, Showing How the Two 1963 Launches Do Not Fit into the Pattern of the Previous Launches.