
CXC-DM-003

CXC Data Model

Vol. 3

Data Model Library Arhiteture

Jonathan MDowell

Chandra X-ray Center

Deember 27, 2001

Contents

1 Goals 3

2 New Struture 3

3 DM funtionality 7

3.1 Kernels and onverters . 8

4 History of DM development 8

4.1 Development of the ode . 8

4.2 CDR douments . 9

4.3 Modi�ations to the original onept . 10

5 The DM publi layer 11

6 The kernel layers 12

7 The PKI 12

8 Work pakages 20

2

1 Goals

The urrent CDM has a lot of useful funtionality, but the internals reet some early

implementation ompromises that impede both debugging and adding new abilities. The goal

of this redesign is to generate a CDM2 whih has the same interfae as the CIAO2.2 CDM

and passes the same regression tests, but has a leaner internal design with the following

properties:

� Implementation to reet the original CDM (1994) design, plus modi�ations due to

lessons learned (see 'historial' setion).

� Possibly add hooks that may be useful in NVO related work. There are no spei�

design elements for this yet, but as NVO work gathers steam the DM design will be

reviewed for possible modi�ation.

� Consistent and doumented design, maintainable and ommented ode, so that others

in CXC an maintain the ode.

� Stable and publi kernel interfae so that others in the ommunity an write new

kernels.

2 New Struture

The most important di�erene is in the layering. In the old struture, kernel routines were

ast in terms that were loser to FITS onepts. Thus, grouping of multiple axes and

oordinates had to be stithed bak together at the DM layer. The new kernel will operate

in terms of the DM strutures.

The �rst design deision is to hoose between two models of kernel interation:

� Allow kernel routines to diretly �ll DM strutures, for maximum eÆieny.

� Retain a strit layering in whih DM strutures are �lled only via interfae routines.

This makes it easier for others to write kernels.

I really want it to be easy to write kernels, so I hose the seond. However, in our new kernel

interfae, we will all DM layer routines, as opposed to the old rule in whih kernel routines

did not all the DM. This implies a new layer diagram.

3

The original DM layer diagram was:

| C Appliation | F77 appliation|

- -------------------

| | F77 wrappers |

| DM publi layer |

| ETOOLS |

| FKER | | IQKER |

| CFITSIO | | IRAF |

------------ ---------

| |

| Region | EDSUTIL | WCSLIB|

In the �rst DM rewrite, the ETOOLS layer was removed. In the new model, we will have

the following layer diagram:

| C Appliation | F77 appliation|

- -------------------

| | F77 wrappers |

| DM publi layer (DMP) |

---------------- ----------------

| FKER | | IQKER |

------------------ ------------------

| CFITSIO | PKI | | PKI | IRAF |

----------- ------ |-------

| DM Internals (DMI) |

| Region | DM Utils (DMU) | WCSLIB|

4

In the old model, both the kernels and the ETOOLS layer made alls to the EDSUTIL utility

routines whih ontained a grabbag of generi algorithms and X-ray-astronomy onventions.

In this model, the kernels all a Publi Kernel Interfae (PKI) whih in turn aess a DM

Internals (DMI) layer. The DM publi layer will all both PKI routines and private DM

Internals routines. The PKI routines are simply the publi part of the DM Internals interfae

and aess the same internal strutures. In order to make it easy for people to write new

kernels whih put and get to/from the internal strutures, the PKI needs to be well de�ned

and well mathed to these strutures, but the DM publi layer, whih needs to a di�erent

kind of bookkeeping and to perform eÆient �ltering, may need more diret aess routines

that are not suitable for publi use, so it isn't restrited to the PKI.

The small number of EDSUTIL routines and existing kernel routines whih are generi will

be replaed by a DM Utils layer.

5

A CXC Tool appliation has further relevant struture:

| CXC Tool |

| DM publi layer | DMTLIB | STKLIB | PARAM | DSLIBs |

-------------- ---------- --

| FKER | | IQKER | | DSLIBs|

------------------ ------------------ ---------

| CFITSIO | PKI | | PKI | IRAF |

----------- ------ |-------

| DM Internals |

| Region | DM Utils | WCSLIB|

In this diagram, DSLIBs represent the whole set of CXCDS libraries. The DM is separately

distributable, and its Core Tools (e.g. dmlist, dmopy) are being kept as independent as

possible of the rest of the CXCDS. Therefore, the DM Core Tools will all the DSLIBs only

through the PARAM library. In the urrent separate distribution, whih is not advertised

but has been made available to a limited number of users (J. Davis/MIT; Palermo group,

who are using the Fortran wrappers), the urrent CXC PARAM library is replaed by an

older version whih is not dependent on the other CXCDS libraries, and I will lobby for suh

a library being formally maintained.

The DMTLIB is used for several DM tools. In the new design, the DMTLIB is expeted to

be fully absorbed into the DM publi layer.

The STKLIB handles staks. The status of this library's relationship to the DM also needs

to be reviewed. Beause of the existing ode base, I propose that the STKLIB remain as

is, but new DM routines be provided to open and manipulate staks of datasets; these new

routines would be phased in slowly. These new routines may not be implemented in the �rst

(CIAO 3.0) phase of the redesign; the main impat on lower layers of the DM is that (1)

we may want to have a mode in whih you have a 'dmmerge on the y', so that EOF on a

table silently triggers reading from the next table in the dataset stak (but this would imply

inorporating all the header merging mahinery too) and (2) we want to have the ability to

apply a stak of �lters to a �le without reopening it. This ould be done either by a �lter

design whih assumes you are always working with staks of datasets, or by making the user

open a dataset un�ltered and providing an API routine to apply a �lter to a row. The former

approah may imply adding a lot of extra API get/put routines for the multiple-�lter ase.

The latter approah auses muh less grief to the existing API and I propose that solution.

6

3 DM funtionality

All routines in the urrent DM API will remain, and all urrent funtionality will be sup-

ported.

The following DM limitations will be addressed in the redesign:

� Header keyword ordering. There are some limitations on aessing keywords by number

that prevent the keyword insertion routines in dmhedit from funtioning orretly. This

is beause of the onvoluted way that the urrent DM layer interats with the kernels

and should be easy to �x in a leaner design.

� Header keyword grouping. We add the ability to de�ne and manipulate named groups

of keywords, to reet the substruture in our headers.

� Column deletion and insertion. This will always be ineÆient on FITS �les, but should

be supported nevertheless.

� Row insertion and deletion. This will require some modi�ation of the kernel interfae,

and will also be intrinsially ineÆient for FITS.

� Support for expliit bu�er ushing. I will also investigate providing the ability to inhibit

ushing (for PRISM editor appliation) but I'm not promising, as this is intrinsially

problemati.

� Improved and doumented error handling

� Review of funtionality now handled by [opt ...℄ syntax; omplete doumentation of

[opt ...℄ syntax.

� Improved doumentation of bit handling. Support for easier syntax for bit �ltering

(this is a separate enough problem that it does not have to form part of the initial

redesign).

� New funtions to manipulate data subspae, deleting its members and testing whether

a row is within the subspae of another blok.

� Useful wrapper routines to handle primary header handling.

The following future upgrades are planned:

� The ASCII kernel is a high priority and a separate doument will desribe this.

7

� Very preliminary ideas for an IDL kernel, whih would allow DM �ltering and dataset

manipulation from the IDL ommand line, have been disussed with V. Kashyap (CfA)

and D. Lenz (RS In.). We have established a basi approah and some design drivers

(memory management in IDL wrappers, use of the CALL EXTERNAL routine to all

DM C ode).

� Shared memory and/or pipe interfae. CFITSIO and XMM-SAS report limited suess

in usage of shared memory appliations to date, but it seems likely that some form of

shared memory or diret bytestream kernel will be of use in the future.

� Integrated support for assoiating unertainties with olumns.

3.1 Kernels and onverters

It's been suggested that we abandon the kernel paradigm, work purely in FITS, and have

separate (other format) to-and-from DM onverters. Sine we want to keep FITS and the

DM leanly layered, there is atually not muh design di�erene implied. The QPOE and

ASCII kernels would be replaed with QPOE-DM and ASCII-DM onverters, whih would

ontain muh of the same ode as the kernels. The FITS kernel would stay as is. What we'd

lose is the ability to work with ASCII �les and mix and math generi unix and DM tools;

we'd have to keep onverting from FITS bak to ASCII to apply ASCII methods to the data.

We'd also lose the option to develop a kernel for a format whih supports DM onstruts

that are not fully supported in FITS.

I remain onvined that support for the kernel paradigm is the right thing to do for the long

run. That doesn't stop users writing a onverter from their favorite data format to FITS

and then running the DM tools in purely FITS mode; that's an entirely legitimate thing to

do.

4 History of DM development

4.1 Development of the ode

The initial onept of the DM was elaborated in 1994. At that point, the CXCDS onept

involved a ore IRAF omponent, and the DM o�ered a path to also support FITS event

lists. During the PDR/CDR proess, the deision was made to arry out multiple objet-

oriented design yles, �rst with D. van Stone and then with P. Patsis, rather than develop

prototype ode. This limited the usefulness of the design proess. After CDR, it was deided

to try and build the DM by reusing the muh more limited ETOOLS library already under

8

development. This aused onsiderable awkwardness in the design and made it deviate

signi�antly from the original onept. Frequent developer turnover made progress very

slow exept of ourse for the period when Mike Noble was lead, and thanks to him the

DM did suessfully support CXCDS development starting in 1998, and the DM tools were

welomed by the ommunity following the publi CIAO release in 1999. I then beame the

developer as well as the siene lead, and removed an entire layer from the design, deleting

over 10K lines of ode. Nevertheless, the existing design still does not fully map to the

original onept and is strutured in a way that's hard to add new features. Thus, a major

redesign is ritial to provide a robust DM for long-term maintenane.

In the longer term, the development of an NVO protool may replae parts of the DM.

Nevertheless, having a lean DM will be an essential basis for my own analysis of the NVO

issues.

4.2 CDR douments

Setion 4.7.7 of DS01 desribes the data analysis API. In the language of setion 4.7.7, the

translation wrappers map to the DM Fortran wrappers, the data manipulation libraries map

to the DM publi and internal layers, and the DM virtual �le syntax implements the API

mini-language for desribing generi analysis objets. The 'adaptation wrappers' do not

exist (I prototyped wrappers for IRAF but it was deided that DS ould not support the

overhead of supporting them) but may arise if the IDL kernel is ever implemented. In Fig

4.7-14 the kernels were the IRAF IMIO and the TBTABLES kernels. The IRAF kernel is

still supported; the TBTABLES kernel was abandoned as ST Tables an be replaed in IRAF

with FITS, whih has beome muh more important to the ommunity in the interim. The

'generi data model library' and 'siene data model library' layers have been merged, sine

there was no added value from the lower layer (I think it was ode for the ETOOLS layer).

The DDF layer is another name for the DM kernel layer. The addition of further kernels is

ompromised in the urrent design by the poor math of the urrent kernel API to the DM

fundamental design.

The promised features of the Data Model in 4.7.7 were

� 1D and 2D �ltering - implemented

� staking - supported in stak library

� oordinate systems - supported

� oordinate onversions - supported

� unertainties - not implemented; a harder problem than antiipated.

9

� The instantiation of data produts in di�erent formats = supported

� support for preferred olumns - supported, although most data produts don't make

full use of it.

� interpolation support - as desribed, implemented in the CIAO 2.2 dmjoin tool.

� mission independene and generiity of the DM - supported

� 'quantity' support - implemented as DM 'desriptors'

� QPOE support - implemented, although not as fully as FITS

� FITS support - implemented

� EDF support - onept abandoned, merged with QPOE kernel

� ST Tables support - not urrently implemented

� IRAF images - implemented

� The shared memory kernel has not yet been implemented.

� OTS libraries: IRAF libraries used; TBTables, PROS, XRAY, EVTIO libraries not

used.

4.3 Modi�ations to the original onept

The disussion in DS01 was not a diret reetion of the original DM design; it reeted the

ETOOLS ode reuse ompromise.

In terms of the original design, generi (vetor array) desriptors have now been implemented,

but the simple ases (salars, non-array vetors) often have separate ode sine they were

oded �rst; in many ases that ode ould be simpli�ed by treating them as speial ases of

the generi.

There are two main hanges I feel are needed to the original DM onept: a way to modify

data subspaes to drop quantities when their �lters get too ompliated, and a modi�ation

of the implementation of `element types', whih were to be used to handle unertainties.

When �ltering, there typially omes a point in data analysis where propagating parts of

the history is no longer interesting. I therefore propose a new syntax option to allow editing

of the data subspae. For instane, you may want to apply the time �lter for CCD4 to a

�le without also applying the did=4 �lter. This syntax will be equivalent to the [ols ...℄

syntax, but for the olumns of the data subspae.

10

Seondly, I now propose to treat ompliated element types using the existing vetor ol-

umn mehanism, rather than add an extra layer of struture. The DM's pereived to be

ompliated enough without adding further dimensions.

Apart from these hanges, the 1994 DM doument ontinues to reet my view of the orret

low-level generi interfae.

5 The DM publi layer

The DM publi layer (DMP) API will be largely unhanged, although DMTLIB routines

will be added.

The DM publi layer's internal strutures will be largely unhanged. However, the PKI will

now deal with the mapping from DM strutures to kernel strutures - previously, the DM

layer split things up into kernel-level (atually ETOOLS) onepts and then passed them to

the kernel interfae. In the new design, it is the kernel's responsibility to translate between

DM and kernel onepts.

Some ode that was previously in the kernels will now be in the DM layer. Spei�ally,

the row �ltering ode will be at the DM layer; this will ause minimal performane hit,

if any. This will avoid dupliating the �ltering ode in the kernels, dupliating all the

�ltering information (ranges and regions) in the kernels, and allows more intelligene in the

�ltering (easier aess to high level info about the objets being �ltered). Performane will

be improved by having the kernels return more than one row at a time when �ltering. At

present, when �ltering, one row at a time is returned to the top layer. In the new design,

a bu�er of rows will be returned and an index will be used to mark whih rows are good.

A memory opy is already done when returning multiple rows in an API all, so there is no

downside to this approah and the ability to all FITSIO to return multiple rows at one

should result in a measurable speedup. It will be realled that the urrent row �ltering

ode was written under heroi time pressure by Mike and was always intended as a stop-gap

approah; I have done some rework sine then but the original skeleton is still onstraining

us.

In ontrast, muh of the ode that was in the DM layer for omposing vetor olumns and

basis keywords will now be relegated to the DM internals layer and alled by the kernels. This

avoids the problems aused when the kernels pik information apart in their layer whih then

has to be stithed bak together in the DM layer. In general this �ts with the philosophial

approah of �tting data into the DM onepts as soon as possible and having the internal

work done in terms of those onepts, whih will make a lot of the internals more robust.

The oordinate and DSS manipulation ode will largely remain at the DMP layer, although

11

the writing and reading parts of the ode will be split between the KER and DMI layers for

the reasons mentioned above for vetors.

6 The kernel layers

The kernel layer internal strutures will be altered to avoid ahing DM objet values a seond

time. The internal strutures will be limited to ontaining kernel-spei� information.

To aid in opying objets, the di�erent kernels will share a ommon handle type. Some PKI

routines will aept a dmKernelData handle ontaining kernel-spei� data for an objet.

The kernel routines will test the ommon kernel id member of this struture, and if it's the

right kernel, the data will be opied, otherwise it will be ignored. For example, FITS ASCII

and binary tables both map to a DM table. In the new design, the blok will have a kernel-

spei� pointer that says "I was originally a FITS ASCII Table". If it's opied to a QPOE,

that information will be ignored, but if it's opied to another FITS �le, it will be piked up

and (unless overridden by a spei� diretive) the resulting FITS �le will be made an ASCII

table instead of the default binary kind. This provides a mehanism for making sure that a

opy of a FITS �le to a FITS �le preserving as muh of the original �le's idiosynrasies as

possible, while retaining the apability to opy it to a QPOE �le in a lean way.

7 The PKI

Here are the existing Kertable routines and their PKI analogs. The names 'Objet' and

'Property' will be hanged to 'Blok' and 'Key' to make the DM nomenlature onsistent.

Data-type families will be made type-generi, so that

kPutProperty_double(blok, name, double val, status)

beomes

kPutKey(blok, name, dmDOUBLE, void* val, status).

This redues the number of separate PKI routines.

Some desriptor-spei� routines will be made desriptor-generi, so that kSetColumnUnits

beomes kSetDesriptorUnit and works to set the units for keys and olumns and oords.

12

This basially moves a swith statement into the kernels, but dereases the number of kernel

routines; this deision may be revisited.

Some routines that aess by name will be hanged to aess by number or handle, so

that renaming the objet or (in some ases) multiple objets with the same name will not

ause problems. Attention will be given to make sure that this doesn't ause new problems

when reordering objets (whih is not well supported in the urrent design anyway): areful

distintion will be made between raw objet order and virtual-�le objet order.

13

etBool (*kAessDataset) (har *dsname); TBD

etBool (*kCanCreateDataset)(har* dsname); TBD

void (*kCreateDatasetFun) (har *dsname, kdsHandle *kds,

etStatus *status);

Same?

void (*kDeleteDatasetFun) (har *dsname, etStatus *sta-

tus);

Same?

void (*kRenameDatasetFun) (har *dsname, har *newd-

sname, etStatus *status);

Same?

void (*kOpenDataset) (har *dsname, etBool update, kd-

sHandle *kds, etStatus *status);

Same?

void (*kCloseDatasetFun) (kdsHandle kds, etStatus *sta-

tus);

Same?

void (*kFlushDatasetFun) (kdsHandle kds, etStatus *sta-

tus);

Same?

etBool (*kAessObjetFun) (kdsHandle kds, har *obj-

name);

Not needed

void (*kCreateObjetFun) (kdsHandle kds, har *objname,

edsObjType objtype, kobjHandle *kobj, etStatus *status);

Same

void (*kGetObjetNamesFun) (kdsHandle kds, har ***ob-

jnames, long *nobjet, etStatus *status);

Replae with GetNoBloks and GetBlokNameByNo?

void (*kGetOpenObjetName) (kobjHandle kobj,har **ob-

jname,etStatus *status);

Change to aess by No

void (*kGetObjetTypeFun) (kdsHandle kds, har *obj-

name, edsObjType *objtype, etStatus *status);

Same

void (*kDeleteObjetFun) (kdsHandle kds, har *objname,

etStatus *status);

Change to aess by No

void (*kRenameObjetFun) (kdsHandle kds, har *obj-

name, har *newobjname, etStatus *status);

Change to aess by No

edsObjType (*kOpenObjetAs) (kdsHandle kds, har *ob-

jname, edsObjType eObjet, kobjHandle *kobj, etStatus

*status);

TBD

void (*kCloseObjetFun) (kobjHandle kobj, etStatus *sta-

tus);

Same

1
4

void (*kFlushObjetFun) (kobjHandle kobj, etStatus *sta-

tus);

Same

etBool (*kAessProperty) (kobjHandle kobjh, har*); TBD

void (*kDeleteProperty) (kobjHandle kobjh, har*, etSta-

tus*);

TBD

void (*kPutProperty<type>) (kobjHandle kobjh, har*

propname, <type> val, etStatus* status);

Add des and unit and omment arguments

Make type-generi

void (*kGetProperty<type>) (kobjHandle kobjh, har*

propname, <type>* val, etStatus* status);

Add extra info, make type-generi

void (*kPutPropertyComment) (kobjHandle kobjh, har*

propname, har* omm, etStatus* status);

Make desriptor-generi

void (*kGetPropertyComment) (kobjHandle kobjh, har*

propname, har** omm, etStatus* status);

Make desriptor-generi

void (*kGetPropertyNames) (kobjHandle kobjh, har***

propnames, long* numprop, etStatus* status);

Replae with aess by number

void (*kGetPropertyType) (kobjHandle kobjh, har* prop-

name, etDataType* proptype, etStatus* status);

Aess by handle

void (*kGetNewKWIndex) (kobjHandle kobj, har*

strIndexKey, long* n, etStatus* pStatus);

Deleted, done within kernel

etBool (*kGetKWIndex) (kobjHandle kobj, har* strKW-

Name, har* strIndexKey, long* n, etStatus* pStatus);

Deleted, done within kernel

har* (*kET2KernelDatatype) (etDataType etType, etSta-

tus* pStatus);

Deleted, work in DM types

etDataType (*kKernel2ETDatatype) (har* strKernel-

Datatype, etStatus* pStatus);

Deleted

void (*kTotalTableRows) (kobjHandle kobjh, long* num-

rows, etStatus* status);

Same

void (*kTotalTableColumns) (kobjHandle kobjh, long* num-

rows, etStatus* status);

Same

etBool (*kAessColumn) (kobjHandle kobjh, har* ol-

name);

Not needed

1
5

void (*kCreateColumn) (kobjHandle table,har *ol-

name,etDataType datatype, long length, long string length,

long* axlen, long naxes, har *units, har *format, int var,

har* des, kolHandle *ol, etStatus *status);

Same?

void (*kDeleteColumn) (kobjHandle kobj, har* olname, et-

Status *status);

Aess by handle

void (*kRenameColumn)(kobjHandle table, har* olname,

har* newolname, etStatus* status);

Aess by handle

void (*kOpenColumn) (kobjHandle table, har *olname,

kolHandle *ol, etStatus *status);

Aess by handle, name table held at DMP layer

void (*kOpenColumnByPosition) (kobjHandle table, long

olpos, kolHandle *ol, etStatus *status);

Combined with routine above

void (*kGetOpenColumnName) (kolHandle ol, har** str,

etStatus* status);

Desriptor-generi

void (*kGetColumnType) (kobjHandle table, har *olname,

etDataType *oltype, etStatus *status);

Desriptor-generi

void (*kGetColumnLength) (kobjHandle table, har *ol-

name, long *length, long** axlen, long* naxes, etStatus *sta-

tus);

Desriptor-generi

void (*kGetColumnStringLength) (kobjHandle table, har

*olname, long *string length, etStatus *status);

Desriptor-generi

void (*kGetColumnUnits) (kobjHandle table, har *olname,

har **units, etStatus *status);

Desriptor-generi

void (*kGetColumnFormat) (kobjHandle table, har *ol-

name, har **format, etStatus *status);

Desriptor-generi

void (*kGetColumnNames) (kobjHandle table, har***

names, long* num, etStatus* status);

Not needed

void (*kSetColumnUnits)(kobjHandle table, har* olname,

har* format, etStatus* status);

Desriptor-generi

void (*kSetColumnFormat)(kobjHandle table, har* ol-

name, har* format, etStatus* status);

Desriptor-generi

void (*kGetRows)(long rownum, kolHandle* olhandles,

long numols, long buen, kolBu�er olbu�er, long* nread,

int invert, etStatus* status);

To be redesigned

1
6

void (*kPutRows)(long rownum, kolHandle* olhandles,

long numols, long buen, kolBu�er olbu�er, long nwrite,

etStatus* status);

To be redesigned

void (*kGetAxLen)(kobjHandle, long, long*, etStatus*); Desriptor-generi

void (*kGetNDim)(kobjHandle, long*, etStatus*); Desriptor-generi

void (*kGetImageType)(kobjHandle, etDataType*, etSta-

tus*);

Desriptor-generi

void (*kGetSetion)(kobjHandle, long*, long*, long, void*,

int,etStatus*);

Same?

void (*kSetAxLen)(kobjHandle, long, long, etStatus*); Desriptor-generi

void (*kSetNDim)(kobjHandle, long, etStatus*); Desriptor-generi

void (*kSetImageType)(kobjHandle, etDataType, etSta-

tus*);

TBD

void (*kPutSetion)(kobjHandle, long*, long*, long, void*,

etStatus*);

Same?

void (*kAddIntervalToFS)(kobjHandle table, etDataType

datatype, void *starts, void *ends, long numintervals, har*

intname, har *olname, long pt, etStatus* status);

Delete; �lter at DM layer

void (*kMakeTabFilter)(kobjHandle objh, har* tabname,

har* name, har** olNames, void* mins, void* maxes, et-

DataType dtype, har* unit, long nvalues, etStatus* pSta-

tus);

Redesign as generi DSS writer

void (*kGetTabFilter)(kobjHandle objh, har* tabname,

har** atual, har** name, har** olNames, void** mins,

void** maxes, etDataType dtype, har** unit, long* nvalues,

etStatus* pStatus);

Redesign as generi DSS reader

void (*kAddBinSpe)(kobjHandle objh, har *axisName,

double min,double max,double step,etStatus* status);

Delete; bin at DM layer

void (*kPutWCS)(kobjHandle kobjh, har* name, har*

ttype, har** ptNames, long* olNums, har* unit, et-

DataType dType, void* rpix, double* rvals, double* delt,

long dim, double* params, long nparams, har system, etSta-

tus* pStatus);

Same?

1
7

void (*kGetWCSNames)(kobjHandle kobjh, har*** ppstr-

WCSNames, long* numCoords, etStatus* pStatus);

Replae with generi WCS handle reader

void (*kGetWCSInfo)(kobjHandle kobjh, har* name, har**

type, har** unit, har*** ptNames, har* system, long**

olNums, etDataType* dtype, void** rpix, double** rvals,

double** delt, long* dim, double** params, long* nparams,

etStatus* pStatus);

Redesign and ombine with above

void (*kSetColumnRange)(kobjHandle objh, har* name,

void* vmin, void* vmax, etStatus* pStatus);

Desriptor-generi

void (*kGetColumnRange)(kobjHandle objh, har* name,

void* vmin, void* vmax, etStatus* pStatus);

Desriptor-generi

void (*kSetColumnBin)(kobjHandle objh, har* name, void*

vmin, etStatus* pStatus);

Same?

void (*kGetColumnBin)(kobjHandle objh, har* name,

void* vmin, etStatus* pStatus);

Same?

void (*kSetColumnNull)(kobjHandle objh, har* name,

void* vmin, etStatus* pStatus);

Desriptor-generi?

void (*kGetColumnNull)(kobjHandle objh, har* name,

void* vmin, etStatus* pStatus);

Desriptor-generi?

void (*kSetColumnDes)(kobjHandle objh, har* name,

har* des, etStatus* pStatus);

Desriptor-generi

void (*kGetColumnDes)(kobjHandle objh, har* name,

har* des, long maxlen, etStatus* pStatus);

Desriptor-generi

void (*kSetHints)(har* name, har* value); Same

void (*kAddRegionFilter)(kobjHandle objh, har** pt-

names, void* region, long pt, etStatus* pStatus);

Delete, �lter at DM layer

void (*kSetTablePref)(kobjHandle objh, har** names, long

n, etStatus * status);

Same

void (*kGetTablePref)(kobjHandle objh, har*** names,

long* n, etStatus * status);

Same

long (*kGetNoKeys)(kobjHandle objh, etStatus* status); Same

void (*kKeyPrint)(kobjHandle objh, long keyno, har* buf,

long maxlen, etStatus* status);

Same?

int (*kNullPrimary) (kdsHandle ds); TBD

1
8

void (*kUpdateFilter)(kobjHandle blok, har* buf); TBD

void (*kGetComment)(kobjHandle objh, har* name, long

no, har** tag,har** omment, etStatus* status);

Same

void (*kSetArraySize)(kolHandle ol, long nvals); Same?

1
9

8 Work pakages

Here I desribe the omponents of the DM and the extent of the proposed work. The IRAF-

QPOE kernel is not addressed here; to handle it, the hanges would be pretty mehanial

after doing the FITS kernel. The ASCII kernel ould be written in parallel with the FITS

kernel rewrite, or left till later.

The main piees of work are:

� (A) remove dupliation of dm/kernel ahed info

� (B) header key parsing and omposing

� (C) header key ahing

� (D) table �ltering

� (E) image axes

� (F) image �ltering

(A) Dupliation of dataset, blok and desriptor info: these strutures exist at both DM and

kernel layers. The kernel layer strutres have some kernel-spei� info but also dupliate

muh of the info from the DM layer. I will move the DM strutures to the DMI layer at

the bottom, and having both DM and kernel layers aess them - either diretly or (at some

eÆieny ost) via wrapper routines. This will eliminate a lot of ode that's required to

keep them in syn, and make it easier to write new kernels. The removal of inompatible

terminology (properties for keys, objets for bloks) will make the ode more maintainable,

too.

A typial hange to be made is the method of losing a blok. Currently, the dmBlokClose

routine alls a dmpBlokClose routine whih does work at the DM layer and also alls a

kernel->BlokClose routine to do kernel-spei� work. In the new design, dmBlokClose will

all kernel->BlokClose whih will in turn all dmpBlokClose, now at the DMI layer. The

argument to the kernel routine was a dmkBlok (kernel blok) and is now a full dmBlok; the

dmkBlok struture is simpli�ed beause it no longer needs to dupliate and stay in syn with

the dmBlok struture; and a few lines of ode in the kernel routine are hanged to distinguish

between dmkBlok and dmBlok referenes. Most of the work is in the repakaging and

moving around, rather than in lines of ode atually hanged.

(B) Header parsing: There is a lot of nasty ode in dmbasis.. The problem, as ever, is that

ETOOLS piked apart the ompound information at the kernel layer - e.g. DTYPE/DVAL

pairs, making it hard to put them bak together. This is even worse at key write time,

20

where the onvention of DTYPE/DVAL should be at the kernel layer and invisible at the

DM layer. Muh grief to keep this working in the urrent design, and it stops me �xing the

header ahing problem below. The new design lets the DM work in terms of platoni ideal

DM keys, and the fat that FITS may use multiple keywords to store them is entirely hidden

at the DM layer as it should be.

(C) Header ahing: The problem with editing keywords is that information about keywords

is kept both at the DM and the kernel layer, but hanges in keyword order are not propagated.

We do want to have a separate kernel header ahe in FITS, beause of the way the di�erent

keywords interat with one another. So we need to update both the DM and FITS order at

the same time. This requires hanges to the kernel interfae routine for header keys, whih

are already really broken beause of the header parsing issues desribed above.

(D) Table �ltering: When �ltering, the urrent design passes a request for one row down

to the kernel; the kernel reads one row and �lters it, and passes the result bak up to the

DM, �lling another row in the row bu�er. The bu�er is then mempy'd to the output.

Instead, I propose to �ll the DM row bu�er diretly with data, do the �ltering there and

mark eah row as good or bad, and then mempy the good data row by row to the output.

This will redue the number of alls to CFITSIO, and eliminate a whole set of kernel �lter

infrastruture that dupliates the DM layer �lters. Testing of these hanges (see below) may

be split up - �rst put in the infrastruture and test that you an still get data in and out

without �ltering. Then debug the �ltering and test that. Then put bak in the hooks to

subspaes and oordinates, and test that. At that point, you have really tested all of the

new parts A-D. The image stu� (E,F) is just as important, but is a more (not entirely!)

separable problem.

(E) Image axes: this is bound up with header parsing. The worst problem is the oordinate

systems. The ETOOLS legay is that the information about the individual axes and their

oordinate systems is broken apart and passed up to the DM layer as lists of names, whih

then have to be mathed up again - at the FITS level we have axis numbers to let us

do this more easily and robustly. The ode that stithes together information about the

di�erent axes is neessarily ompliated anyway, as it must support logial, physial and

world oordinate systems, and the presene or absene of them on any partiular axis, and

spotting that the presene of an RA/De world system implies that the physial system

must be sky oordinates even if there aren't any keywords to say so, and other speial ases.

However, the situation is made even harder in the urrent on�guration and the urrent

ode is one of the most onfusing and least maintainable parts of the DM. Further, it has

proved impossible to reliably support image �ltering on logial and physial oordinates.

The rewrite will allow me to provide this support robustly and leave behind a still arane

but somewhat more maintainable algorithm.

(F) Image �ltering: One the new support for image axes is in plae, I an make image

�ltering work properly. This requires minor hanges to the �ltering ode, and the move of

21

the �ltering ode to the DM layer (as for tables).

I propose to develop the new DM in a phased manner. However, the new DM will not have

the apabilities of the old DM until the �nal phases. Beause of the interation of di�erent

omponents of the old design, it would be a lot of wasted work to keep the revised DM fully

funtional at every step along the way - it's better to have some things temporarily broken.

Of ourse, while this is happening, the old DM should remain the version seen by iaox! At

eah phase, spei� features of the DM will be tested.

The proposed test/putbak phases are:

Theme Test Capability

Phase A Bloks List bloks

Phase B/C Keys List header

Phase D1 Table Read List table data

Phase D2 Table Write Copy table (no �lter)

Phase D3 Filter Filter table

Phase D4 Subspae/Coords Propagate subspae; hek oords

Phase E Images Image data and oords

Phase F Binning Bin table to image, �lter image

Phase G1 Complete Cleanup, dmopy/dmlist regression pass

Phase G2 Full Debug Test against CIAO tools, debug

Here is a summary of the ode omponents of the DM, and how major the hanges will be.

Of ourse this is a bit misleading, sine even for the piees that say "80% rewrite" muh of

the work will be rearranging bloks of ode, or mehanially going through and replaing a

pointer to one struture with a pointer to another struture (e.g. kernel blok to DM blok).

Segments with signi�ant rewrite are alled out with an asterisk.

Component Subdiretory LOC now % rewrite Notes

DM Parser �lter 2000 10 Minor leanup

DM Subspae �lter 9000 10 Minor leanup

DM Coords oords 2000 10 Cleanup, Syn with kernel

DM Image axes blok 1000 80* (A) Major simpli�ation after new kernel

DM Images desriptor 500 20 Cleanup

DM Bloks blok 5000 30* (A) Syn with rest of rewrite

DM Bu�er mis 2000 80* (D) Rewrite table �ltering

DM Keys desriptor 5000 80* (B) Remove header parsing to kernel

DM Set/Get desriptor 5000 10 Cleanup

DM Desrips. desriptor 2000 50* (C) Add header key stu� from kernel

DM Dataset dataset 600 20 Cleanup, kernel layer hange

Kertable kertable 500 50* (A) PKI routine API

22

Ker Subsp. ft�lter 2300 80* (D) Move �ltering to DM layer

Ker Coords ftoords 1700 30* (B,E) New header parsing

Ker Images ftimages 2200 25(*) (F) Move �ltering to DM layer

Ker Bloks ftsymtab 1000 70* (A) Rewrite - simplify

Ker Bloks ftobjet 1000 70* (A) Rewrite - simplify

Ker Bu�er fttables 1500 70* (D) Move �ltering to DM layer

Ker Keys ftproplist 4200 40* (B,C) Rework to do more parsing at kernel

Ker Tables fttables 4000 40* (A,D) Don't ahe info at kernel layer

Ker Dataset ftdataset 500 20 Cleanup, kernel layer hange

Utils edsutil 5000 40 Cleanup and additions

23

