75th International Astronautical Congress

14-18 October 2014, Milan, Italy

2014-2024, the good old days in New Space: Facts and figures, lessons learnt and new trends in Earth Observation

Gil Denis⁽¹⁾, Jonathan McDowell⁽²⁾, Mathieu Grialou⁽³⁾, Nicolas Moulin⁽¹⁾

(1) Airbus Defence and Space, (2) Harvard-Smithsonian Center for Astrophysics, (3) CNES, French embassy in China

IAC-24-E6.3.4 x85512

Get the Moon with EO satellites:

Moon seen by Pléiades Neo 3

(copyright Airbus DS)

2014-2023: a new era for commercial Earth Observation

[2014-2023]

Total mass of EO satellites per decade and weight of commercial segment

Early days in Earth observation and evolution towards commercial EO

Early days in EO:

- Until 1969 (first race to the Moon), **EO** satellites = spy satellites (USA and USSR).
- 1962-1989: 35 large military satellites per year (>245t per year).
- 1972: **ERTS-A** aka "Landsat 1".
- 1986: **SPOT 1**, first commercial satellite, Chernobyl and the beginning of a success story in France. "The Invader" (Wall Street Journal).
- 1992: Failure of EOSAT company and Land Remote Sensing Policy Act. Landsat-7.
- Other institutional programmes: **Resurs** or **Kanopus** in Russia, **IRS** and **Cartosat** in India, **JERS** and **ADEOS** in Japan.
- In China: ZiYuan (1990), Huanjing, Shiyan, TianHui, Haiyang, Yaogan, CHEOS.
- In Europe: **ERS-1** (1991), ERS-2, **Envisat** (2002), paving the way for **Copernicus** (9 sentinel missions in orbit since 2014).

Below 1m: US leadership in commercial EO

- March 1994: Presidential Decision Directive-23 (Clinton Administration). Policy on Remote Sensing Licensing and Exports. Allows 1m resolution.
- Sept. 1999: **Ikonos-2** launch.
- 2003: **NGA framework contracts** (Clearview, NextView and Enhanced View) Framework programmes, awarded to Digital Globe and Space Imaging.
- 2011: Pléiades-1A Launch. Pléiades-1B in 2012.

1 Earth, 1m, 1d? Key Hole and Google Earth

- 2001: **Earthviewer** (Keyhole). EO imagery everywhere?
- 2003: US invades Iraq.
- 2004: acquisition of Keyhole by Google.

Skybox and Planet Labs: emergence of New Space

- May 2009: Skybox Imaging (Stanford students)
- Dec. 2010: Cosmogia (aka Planet Labs)
- Apr. 2013: Dove-1 and Dove-2 in orbit.
- Nov. 2013: **Skysat-1**.

Facts and figures on New Space in Earth Observation

Presentation of OSINT data used in the study

Technical information (EO satellites in orbit)

- **General Catalog of Space Objects** (GCAT) compiled by Jonathan Mc Dowell (CC-BY). First version in Aug. 2020. Monthly updates.
- Celestrak satellite catalog (T.S. Kelso).
- **Gunther Space Page**, one of most comprehensive online resources dedicated to space missions.
- **Un autre regard sur la Terre**, a French-language blog on Earth observation.
- Company web sites, specialised newspapers, forums, social media and newsletters on EO.

5 categories:

commercial, civil institutional, defence / intelligence and academic / amateur / education and other non-profit satellites.

Business and financial data

- Annual reports (e.g. SEC) when available.
- Stock price for publicly traded companies.
- **Investment** (VC and PE) reported by the emerging companies or specialized web sites when publicly available.
- Market forecast and global activity of space companies: Euroconcult, NSR, Bryce/SIA (public executive summaries).
- Press releases and social media.

Main challenges of OSINT approach:

 Access to specific technical information (e.g. satellite mass accuracy, satellite status)

- Detailed financial data and market forecast not publicly available.
- Legacy EO operators less "visible" than mature startups.

The last ten years in commercial Earth Observation by the numbers:

2014-2023: a wind of change in LEO

997 commercial EO satellites:

- 75% of total EO satellites (2014-2023).
- 50% still active in 2024.

53 nations own 1+ EO satellite:

- 22 nations own a commercial satellite.
- 10 countries = 98% of Σ M, 95% of Σ sats.

Mass in orbit: 61+ tons

- 12% of total EO satellites (2014-2023).
- From <1kg to 4000kg.

New commercial operators:

- 23 significant operators (>10 sats, $\sum M > 400 kg$).
- 11 large operators: 3 legacy and 8 "old" startups ($\sum M > 1500 \text{ kg}$).

- 4 first Maxar Legion satellites.
- 3 batches of **Starshield** satellites (65) for NRO. A game changer? Payload TBC.
- Smaller satellites: Planet (36), Satellogic (3), Iceye (7), Capella (2), Umbra (2), Synspective (1) and QPS (1).

Legacy players, startups and new national ambitions

A new landscape

2 satellites – 5.3 tons

3 satellites - 2.6 tons

560 satellites – 5.1 tons

Commercial EO satellites in orbit:

What do we learn from technical data?

Commercial EO satellites in orbit:

Average satellite mass and number of satellites per commercial operator

Resolution against revisit

And the winner is...

Commercial EO satellites - Resolution, swath, active satellites in 2024

+ some attempts to have the best of the two worlds, e.g. Superview (China): GSD 0.5m / swath 130km

Business data:

Market evolution and market forecast: too optimistic?

Business data:

Evolution of private investment in EO startups and main beneficiaries

Business data:

Stock price and financial results

Stock price: Oct. 15th

Commercial EO: the promises and the state of play in 2024

The glass seems half full or half empty...

- Almost thousand new satellites launched between 2014 and 2023.
- Trend still positive in 2024.
- Tens of new commercial companies, backed by private investors.
- EO market growth: probably around 15% or 20% of the imagery market value in 2023.
 Not addressed before by legacy players.
- Significant impact at satellite and payload manufacturing level.

The huge potential of EO is still... a potential

Market disruption in commercial EO did not materialize: commercial suppliers / non commercial customers

- Profitability is not yet forthcoming: huge net losses, cash burn rate, lay-offs, etc.
- Main sources of revenue: defence and intelligence (B2D). Slow ramp-up of the business with commercial customers (B2C).
- Value-Added-Services: missed projections.
- Stock prices: far below the initial value.
- **Strategic pivots**: from service to satellite manufacturing.
- Only one European start-up among the 25 top EO companies.
- Europe is far behind USA and China in the new space race.

Disruption or continuity? Evolution of EO today and omorrow...

Lessons learnt and scenarios for tomorrow

The profitability issue and its impact on competition

- Business failures, M&A and alliances, new strategies and a fiercer competition: the main ingredients in the short term.
- Impact at pricing policy, products and commercial strategy levels.
- Cash crisis and loss of investors' confidence.

A slightly bigger cake (or pizza) with many more guests around the table

Tomorrow: pivots, new strategies and new developments...

Main customers of commercial EO: the usual suspects, like before?

- Instead of becoming B2B, commercial EO is still mainly B2G or B2D.
 - B2D = 67% of imagery products. 40 50% if Value-Added Services are included.
 - Incentive mechanisms and frameworks contracts in the US (DoD, NRO, NASA). Less true in Europe.
 - Satellite infrastructure: the supplier base and the manufacturing ecosystem grow.
 - Europe: behind two giants?

Three main options for all EO operators:

- 1. Target the most readily accessible market (defence and intelligence) or
- 2. Address new verticals.
- 3. Strategic pivots.

- **Development of new satellites** with higher resolution = **new investments**.
- Sell satellites instead of just imagery and value-added services (e.g. Satellogic, Blacksky or Iceye).
- An upmarket positioning of the most mature startups:
 a new challenge for the legacy suppliers.

The 4 main challenges of EO business:

Strategic positioning

3 basic options + various trade-offs

(e.g. joystick model for defence customers)

Number and heterogeneous population of customers

- "Low-hanging fruits": few customers able to award large contracts. EO expertise. Mainly in the defence sector and GAFAMs for LBS.
- New potential customers, **not interested by EO imagery**: **they need high level information derived from it** (VAS).
- Market fragmentation (geographic area, customer activity, niche markets): cost and legitimacy of the service providers.

The main challenges of EO business:

The missing links between imagery and value-added services

- Specific customer's requirements vs product definition.
- Dilution of the actual weight of EO data (among other sources of information).
- Tricky route between a small number of vertical markets to a fragmented users base.

and between space and final user

Space, ground and IT infrastructure

- A wide range of technologies, from space to advanced IT.
- Dominant motto: Al and analytics will close the gap.
 Partly true...
- Outsourcing and external suppliers can generate significant costs.

Wrap-up

Beyond the retrospective analysis...

- Disruption in EO industry:
 initial promise of New Space is only partly met.
- New EO assets in orbit: **impressive achievements**. New ways of designing and manufacturing satellites. New services.
- Market size and customers' profile evolution is **below expectation**: the **usual suspects are still the main customers**.
- Cash crisis: substantial risk of bankruptcy (for the weakest actors).
- Strategic pivots are likely: **startups moving from services to satellite manufacturing.**
- Support and incentives of governments will remain essential (e.g. framework contracts, dual use schemes).
- Is it truly a commercial business? Strong influence of defence and governmental customers.
- Links between private companies or investors and national and sovereignty stakes.
- Future of EO: Europe behind two giants? Far from a level-playing field.

